Patents by Inventor TOUHIDUR RAHMAN

TOUHIDUR RAHMAN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230335639
    Abstract: A semiconductor structure that includes at least one lateral diffusion field effect transistor is described. The structure includes a source contact and a gate shield that enables the line width of an ohmic region that electrically connects the source/body region to the gate shield to be smaller than the minimum contact feature size. The gate shield defines a bottom recess for forming a narrower bottom portion of the source contact, and a section that flares outward with distance from the ohmic region to extend above and laterally beyond the ohmic region. By providing a wider area for the source contact, the flared portion of the gate shield allows the portion of the gate shield that contacts the ohmic region to be narrower than the minimum contact feature size. As a result, the cell pitch of the lateral diffusion field effect transistor can be reduced.
    Type: Application
    Filed: June 21, 2023
    Publication date: October 19, 2023
    Applicant: Silanna Asia Pte Ltd
    Inventors: Touhidur Rahman, Shanghui Larry Tu
  • Patent number: 11735656
    Abstract: A semiconductor structure that includes at least one lateral diffusion field effect transistor is described. The structure includes a source contact and a gate shield that enables the line width of an ohmic region that electrically connects the source/body region to the gate shield to be smaller than the minimum contact feature size. The gate shield defines a bottom recess for forming a narrower bottom portion of the source contact, and a section that flares outward with distance from the ohmic region to extend above and laterally beyond the ohmic region. By providing a wider area for the source contact, the flared portion of the gate shield allows the portion of the gate shield that contacts the ohmic region to be narrower than the minimum contact feature size. As a result, the cell pitch of the lateral diffusion field effect transistor can be reduced.
    Type: Grant
    Filed: September 9, 2020
    Date of Patent: August 22, 2023
    Assignee: Silanna Asia Pte Ltd
    Inventors: Touhidur Rahman, Shanghui Larry Tu
  • Publication number: 20200411685
    Abstract: A semiconductor structure that includes at least one lateral diffusion field effect transistor is described. The structure includes a source contact and a gate shield that enables the line width of an ohmic region that electrically connects the source/body region to the gate shield to be smaller than the minimum contact feature size. The gate shield defines a bottom recess for forming a narrower bottom portion of the source contact, and a section that flares outward with distance from the ohmic region to extend above and laterally beyond the ohmic region. By providing a wider area for the source contact, the flared portion of the gate shield allows the portion of the gate shield that contacts the ohmic region to be narrower than the minimum contact feature size. As a result, the cell pitch of the lateral diffusion field effect transistor can be reduced.
    Type: Application
    Filed: September 9, 2020
    Publication date: December 31, 2020
    Applicant: Silanna Asia Pte Ltd
    Inventors: Touhidur Rahman, Shanghui Larry Tu
  • Patent number: 10790389
    Abstract: A semiconductor structure that includes at least one lateral diffusion field effect transistor is described. The structure includes a source contact and a gate shield that enables the line width of an ohmic region that electrically connects the source/body region to the gate shield to be smaller than the minimum contact feature size. The gate shield defines a bottom recess for forming a narrower bottom portion of the source contact, and a section that flares outward with distance from the ohmic region to extend above and laterally beyond the ohmic region. By providing a wider area for the source contact, the flared portion of the gate shield allows the portion of the gate shield that contacts the ohmic region to be narrower than the minimum contact feature size. As a result, the cell pitch of the lateral diffusion field effect transistor can be reduced.
    Type: Grant
    Filed: August 14, 2018
    Date of Patent: September 29, 2020
    Assignee: Silanna Asia Pte Ltd
    Inventors: Touhidur Rahman, Shanghui Larry Tu
  • Publication number: 20200058788
    Abstract: A semiconductor structure that includes at least one lateral diffusion field effect transistor is described. The structure includes a source contact and a gate shield that enables the line width of an ohmic region that electrically connects the source/body region to the gate shield to be smaller than the minimum contact feature size. The gate shield defines a bottom recess for forming a narrower bottom portion of the source contact, and a section that flares outward with distance from the ohmic region to extend above and laterally beyond the ohmic region. By providing a wider area for the source contact, the flared portion of the gate shield allows the portion of the gate shield that contacts the ohmic region to be narrower than the minimum contact feature size. As a result, the cell pitch of the lateral diffusion field effect transistor can be reduced.
    Type: Application
    Filed: August 14, 2018
    Publication date: February 20, 2020
    Applicant: Silanna Asia Pte Ltd
    Inventors: Touhidur Rahman, Shanghui Larry Tu
  • Patent number: 9583611
    Abstract: A trench MOSFET device includes a semiconductor layer of a first doping type. MOS transistor cells are in a body region of a second doping type in the semiconductor layer. The transistor cells include a first cell type including a first trench providing a first gate electrode or the first gate electrode is on the semiconductor surface between the first trench and a second trench, and a first source region is formed in the body region. The first gate electrode is electrically isolated from the first source region. A second cell type has a third trench providing a second gate electrode or the second gate electrode is on the semiconductor surface between the third trench and a fourth trench, and a second source region is in the body region. An electrically conductive member directly connects the second gate electrode, first source region and second source region together.
    Type: Grant
    Filed: March 14, 2016
    Date of Patent: February 28, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Thomas Eugene Grebs, Touhidur Rahman, Christopher Boguslaw Kocon
  • Patent number: 9496388
    Abstract: A trench MOSFET device includes a semiconductor layer of a first doping type. MOS transistor cells are in a body region of a second doping type in the semiconductor layer. The transistor cells include a first cell type including a first trench providing a first gate electrode or the first gate electrode is on the semiconductor surface between the first trench and a second trench, and a first source region is formed in the body region. The first gate electrode is electrically isolated from the first source region. A second cell type has a third trench providing a second gate electrode or the second gate electrode is on the semiconductor surface between the third trench and a fourth trench, and a second source region is in the body region. An electrically conductive member directly connects the second gate electrode, first source region and second source region together.
    Type: Grant
    Filed: March 14, 2016
    Date of Patent: November 15, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Thomas Eugene Grebs, Touhidur Rahman, Christopher Boguslaw Kocon
  • Publication number: 20160197178
    Abstract: A trench MOSFET device includes a semiconductor layer of a first doping type. MOS transistor cells are in a body region of a second doping type in the semiconductor layer. The transistor cells include a first cell type including a first trench providing a first gate electrode or the first gate electrode is on the semiconductor surface between the first trench and a second trench, and a first source region is formed in the body region. The first gate electrode is electrically isolated from the first source region. A second cell type has a third trench providing a second gate electrode or the second gate electrode is on the semiconductor surface between the third trench and a fourth trench, and a second source region is in the body region. An electrically conductive member directly connects the second gate electrode, first source region and second source region together.
    Type: Application
    Filed: March 14, 2016
    Publication date: July 7, 2016
    Inventors: Thomas Eugene Grebs, Touhidur Rahman, Christopher Boguslaw Kocon
  • Publication number: 20160197177
    Abstract: A trench MOSFET device includes a semiconductor layer of a first doping type. MOS transistor cells are in a body region of a second doping type in the semiconductor layer. The transistor cells include a first cell type including a first trench providing a first gate electrode or the first gate electrode is on the semiconductor surface between the first trench and a second trench, and a first source region is formed in the body region. The first gate electrode is electrically isolated from the first source region. A second cell type has a third trench providing a second gate electrode or the second gate electrode is on the semiconductor surface between the third trench and a fourth trench, and a second source region is in the body region. An electrically conductive member directly connects the second gate electrode, first source region and second source region together.
    Type: Application
    Filed: March 14, 2016
    Publication date: July 7, 2016
    Inventors: Thomas Eugene Grebs, Touhidur Rahman, Christopher Boguslaw Kocon
  • Patent number: 9318598
    Abstract: A trench MOSFET device includes a semiconductor layer of a first doping type. MOS transistor cells are in a body region of a second doping type in the semiconductor layer. The transistor cells include a first cell type including a first trench providing a first gate electrode or the first gate electrode is on the semiconductor surface between the first trench and a second trench, and a first source region is formed in the body region. The first gate electrode is electrically isolated from the first source region. A second cell type has a third trench providing a second gate electrode or the second gate electrode is on the semiconductor surface between the third trench and a fourth trench, and a second source region is in the body region. An electrically conductive member directly connects the second gate electrode, first source region and second source region together.
    Type: Grant
    Filed: May 30, 2014
    Date of Patent: April 19, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Thomas Eugene Grebs, Touhidur Rahman, Christopher Boguslaw Kocon
  • Publication number: 20150349112
    Abstract: A trench MOSFET device includes a semiconductor layer of a first doping type. MOS transistor cells are in a body region of a second doping type in the semiconductor layer. The transistor cells include a first cell type including a first trench providing a first gate electrode or the first gate electrode is on the semiconductor surface between the first trench and a second trench, and a first source region is formed in the body region. The first gate electrode is electrically isolated from the first source region. A second cell type has a third trench providing a second gate electrode or the second gate electrode is on the semiconductor surface between the third trench and a fourth trench, and a second source region is in the body region. An electrically conductive member directly connects the second gate electrode, first source region and second source region together.
    Type: Application
    Filed: May 30, 2014
    Publication date: December 3, 2015
    Applicant: Texas Instruments Incorporated
    Inventors: THOMAS EUGENE GREBS, TOUHIDUR RAHMAN, CHRISTOPHER BOGUSLAW KOCON