Patents by Inventor Tracey DELLA ROVA

Tracey DELLA ROVA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10366196
    Abstract: Disclosed systems and methods pertain to finfet based integrated circuits designed with logic cell architectures which support multiple diffusion regions for n-type and p-type diffusions. Different diffusion regions of each logic cell can have different widths or fin counts. Abutting two logic cells is enabled based on like fin counts for corresponding p-diffusion regions and n-diffusion regions of the two logic cells. Diffusion fills are used at common edges between the two logic cells for extending lengths of diffusion, based on the like fin counts. The logic cell architectures support via redundancy and the ability to selectively control threshold voltages of different logic cells with implant tailoring. Half-row height cells can be interleaved with standard full-row height cells.
    Type: Grant
    Filed: June 21, 2017
    Date of Patent: July 30, 2019
    Assignee: QUALCOMM Incorporated
    Inventors: Anthony Correale, Jr., Benjamin Bowers, Tracey Della Rova, William Goodall, III
  • Patent number: 10282503
    Abstract: Systems and methods relate to cell placement methodologies for improving length of diffusion of transistors. For example, a first transistor with a first diffusion node which is bounded by a first diffusion cut is identified in a transistor level layout. The first diffusion cut is replaced with a first floating gate, and a first filler cell with a first filler diffusion region is added to extend a length of diffusion of the first diffusion node. Increasing the length of diffusion leads to improving drive strength and performance of the first transistor.
    Type: Grant
    Filed: June 25, 2016
    Date of Patent: May 7, 2019
    Assignee: QUALCOMM Incorporated
    Inventors: Benjamin John Bowers, Anthony Correale, Jr., Tracey Della Rova
  • Patent number: 10236302
    Abstract: Disclosed systems and methods pertain to finfet based integrated circuits designed with logic cell architectures which support multiple diffusion regions for n-type and p-type diffusions. Different diffusion regions of each logic cell can have different widths or fin counts. Abutting two logic cells is enabled based on like fin counts for corresponding p-diffusion regions and n-diffusion regions of the two logic cells. Diffusion fills are used at common edges between the two logic cells for extending lengths of diffusion, based on the like fin counts. The logic cell architectures support via redundancy and the ability to selectively control threshold voltages of different logic cells with implant tailoring. Half-row height cells can be interleaved with standard full-row height cells.
    Type: Grant
    Filed: June 21, 2017
    Date of Patent: March 19, 2019
    Assignee: QUALCOMM Incorporated
    Inventors: Anthony Correale, Jr., Benjamin Bowers, Tracey Della Rova, William Goodall, III
  • Publication number: 20170371995
    Abstract: Disclosed systems and methods pertain to finfet based integrated circuits designed with logic cell architectures which support multiple diffusion regions for n-type and p-type diffusions. Different diffusion regions of each logic cell can have different widths or fin counts. Abutting two logic cells is enabled based on like fin counts for corresponding p-diffusion regions and n-diffusion regions of the two logic cells. Diffusion fills are used at common edges between the two logic cells for extending lengths of diffusion, based on the like fin counts. The logic cell architectures support via redundancy and the ability to selectively control threshold voltages of different logic cells with implant tailoring. Half-row height cells can be interleaved with standard full-row height cells.
    Type: Application
    Filed: June 21, 2017
    Publication date: December 28, 2017
    Inventors: Anthony CORREALE, JR., Benjamin BOWERS, Tracey DELLA ROVA, William GOODALL, III
  • Publication number: 20170371994
    Abstract: Systems and methods relate to cell placement methodologies for improving length of diffusion of transistors. For example, a first transistor with a first diffusion node which is bounded by a first diffusion cut is identified in a transistor level layout. The first diffusion cut is replaced with a first floating gate, and a first filler cell with a first filler diffusion region is added to extend a length of diffusion of the first diffusion node. Increasing the length of diffusion leads to improving drive strength and performance of the first transistor.
    Type: Application
    Filed: June 25, 2016
    Publication date: December 28, 2017
    Inventors: Benjamin John BOWERS, Anthony CORREALE, JR., Tracey DELLA ROVA
  • Publication number: 20170373090
    Abstract: Disclosed systems and methods pertain to finfet based integrated circuits designed with logic cell architectures which support multiple diffusion regions for n-type and p-type diffusions. Different diffusion regions of each logic cell can have different widths or fin counts. Abutting two logic cells is enabled based on like fin counts for corresponding p-diffusion regions and n-diffusion regions of the two logic cells. Diffusion fills are used at common edges between the two logic cells for extending lengths of diffusion, based on the like fin counts. The logic cell architectures support via redundancy and the ability to selectively control threshold voltages of different logic cells with implant tailoring. Half-row height cells can be interleaved with standard full-row height cells.
    Type: Application
    Filed: June 21, 2017
    Publication date: December 28, 2017
    Inventors: Anthony CORREALE, JR., Benjamin BOWERS, Tracey DELLA ROVA, William GOODALL, III
  • Patent number: 9165650
    Abstract: The hybrid dynamic-static encoder described herein may combine dynamic and static structural and logical design features that strategically partition dynamic nets and logic to substantially eliminate redundancy and thereby provide area, power, and leakage savings relative to a fully dynamic encoder with an equivalent logic delay. For example, the hybrid dynamic-static encoder may include identical top and bottom halves, which may be combined to produce final encoded index, hit, and multi-hit outputs. Each encoder half may use a dynamic net for each index bit with rows that match a search key dotted. If a row has been dotted to indicate that the row matches the search key, the dynamic nets associated therewith may be evaluated to reflect the index associated with the row. Accordingly, the hybrid dynamic-static encoder may have a reduced set of smaller dynamic nets that leverage redundant pull-down structures across the index, hit, and multi-hit dynamic nets.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: October 20, 2015
    Assignee: QUALCOMM Incorporated
    Inventors: David Paul Hoff, Tracey A. Della Rova, Jason P. Martzloff
  • Publication number: 20140223093
    Abstract: The hybrid dynamic-static encoder described herein may combine dynamic and static structural and logical design features that strategically partition dynamic nets and logic to substantially eliminate redundancy and thereby provide area, power, and leakage savings relative to a fully dynamic encoder with an equivalent logic delay. For example, the hybrid dynamic-static encoder may include identical top and bottom halves, which may be combined to produce final encoded index, hit, and multi-hit outputs. Each encoder half may use a dynamic net for each index bit with rows that match a search key dotted. If a row has been dotted to indicate that the row matches the search key, the dynamic nets associated therewith may be evaluated to reflect the index associated with the row. Accordingly, the hybrid dynamic-static encoder may have a reduced set of smaller dynamic nets that leverage redundant pull-down structures across the index, hit, and multi-hit dynamic nets.
    Type: Application
    Filed: March 13, 2013
    Publication date: August 7, 2014
    Applicant: QUALCOMM INCORPORATED
    Inventors: David Paul Hoff, Tracey A. Della Rova, Jason P. Martzloff