Patents by Inventor Tracie L. Owens

Tracie L. Owens has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10947464
    Abstract: Systems and methods are provided for integration of use deasphalted resid as a feed for fuels and/or lubricant base stock production with use of the corresponding deasphalter rock for gasification to generate hydrogen and/or fuel for the fuels and/or lubricant production process. The integration can include using hydrogen generated during gasification as a fuel to provide heat for solvent processing and/or using the hydrogen for hydroprocessing of deasphalted oil.
    Type: Grant
    Filed: December 27, 2016
    Date of Patent: March 16, 2021
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Kendall S. Fruchey, Sara K. Green, Anjaneya S. Kovvali, Timothy L. Hilbert, Michael B. Carroll, Ajit B. Dandekar, Sara L. Yohe, Stephen H. Brown, Tracie L. Owens, April D. Ross, Eric B. Senzer, Steven Pyl
  • Patent number: 10808185
    Abstract: Methods are provided for forming lubricant base stocks from feeds such as vacuum resid or other 510° C.+ feeds. A feed can be deasphalted and then catalytically and/or solvent processed to form lubricant base stocks, including bright stocks that are resistant to haze formation.
    Type: Grant
    Filed: December 27, 2016
    Date of Patent: October 20, 2020
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Timothy L. Hilbert, Michael B. Carroll, Ajit B. Dandekar, Sara L. Yohe, Stephen H. Brown, Tracie L. Owens, April D. Ross, Eric B. Senzer, Steven Pyl, Rugved P. Pathare, Lisa I-Ching Yeh, Bradley R. Fingland, Keith K. Aldous, Anjaneya S. Kovvali, Kendall S. Fruchey, Sara K. Green, Camden N. Henderson
  • Patent number: 10590360
    Abstract: Compositions are provided for lubricant base stocks produced from feeds such as vacuum resid or other 510° C.+ feeds. A feed can be deasphalted and then catalytically and/or solvent processed to form lubricant base stocks, including bright stocks that are resistant to haze formation.
    Type: Grant
    Filed: December 27, 2016
    Date of Patent: March 17, 2020
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Lisa I-Ching Yeh, Rugved P. Pathare, Eric B. Senzer, Camden N. Henderson, Tracie L. Owens, Kendall S. Fruchey, Timothy L. Hilbert, Michael B. Carroll, Debra A. Sysyn, Kathleen E. Edwards, Bryan E. Hagee
  • Patent number: 10550341
    Abstract: Methods are provided for producing lubricant base stocks from deasphalted oils formed by sequential deasphalting. The deasphalted oil can be exposed a first deasphalting process using a first solvent that can provide a lower severity of deasphalting and a second deasphalting process using a second solvent that can provide a higher severity of deasphalting. This can result in formation of at least a deasphalted oil and a resin fraction. The resin fraction can represent a fraction that traditionally would have been included as part of a deasphalter rock fraction.
    Type: Grant
    Filed: December 27, 2016
    Date of Patent: February 4, 2020
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Mohsen N. Harandi, Doron Levin, Himanshu Gupta, James R. Lattner, Glenn C. Wood, Keith K. Aldous, Timothy L. Hilbert, Michael B. Carroll, Ajit B. Dandekar, Sara L. Yohe, Stephen H. Brown, Tracie L. Owens, April D. Ross, Eric B. Senzer, Steven Pyl
  • Patent number: 10464009
    Abstract: The embodiments of the disclosure relate generally to adsorbent beds, adsorbent contactors, and methods of using same. The disclosure includes polymer filaments that include an adsorbent particle, such as a zeolite, metal oxide, metal organic framework. A plurality of fibers composed of the polymer filaments can be formed into an adsorbent bed for use in pressure swing and/or temperature swing adsorption processes. The plurality of fibers can be packed into a bed randomly, spirally wound, or woven into a fabric that can be formed into a contacting structure. The adsorbent particle can be contained within the polymer filament and can interact with a medium having a component for adsorption by being in fluid communication with the medium via tortuous pathways within the polymer.
    Type: Grant
    Filed: June 16, 2017
    Date of Patent: November 5, 2019
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Tracie L. Owens, Daniel P. Leta
  • Patent number: 10451602
    Abstract: A method of screening a hydrocarbon stream for potential toxicological hazards. The method involves providing a hydrocarbon stream; conducting 2-dimensional gas chromatography (2D-GC) analysis to quantify saturates and aromatic distribution in the hydrocarbon stream; identifying 2-8 ring aromatic distribution and weight percentage of 2-8 ring aromatic molecules in the hydrocarbon stream from the 2D-GC analysis; relating the weight percentage of 2-8 ring aromatic molecules in the hydrocarbon stream from the 2D-GC analysis to a mutagenicity index (MI), in which the MI is determined in accordance with ASTM Standard Method E 1687; and assessing a potential toxicological hazard of the hydrocarbon stream based on the weight percentage of 2-8 ring aromatic molecules in the hydrocarbon stream from the 2D-GC analysis and a MI threshold value. The 2-8 ring aromatic distribution preferably includes 3-6 ring aromatics, more preferably 3.5-5.5 ring aromatics.
    Type: Grant
    Filed: March 28, 2017
    Date of Patent: October 22, 2019
    Assignee: ExxonMobil Research And Engineering Company
    Inventors: Tracie L. Owens, Beatrice M. Gooding, Frank C. Wang, Yogi V. Shukla, Eugenio Sanchez, Charles L. Baker, Jr., Roland B. Saeger
  • Patent number: 10435359
    Abstract: Provided herein are various methods for forming alkylaromatic sulfonate compositions and blended alkylaromatic sulfonate compositions, and such compositions themselves. The methods of various embodiments include obtaining a C8-C30 hydrocarbon mixture, optionally treating the mixture to concentrate the mixture in sulfonatable aromatics, and sulfonating the mixture to form the alkylaromatic sulfonates. The mixture or treated mixture may be blended with linear alkyl benzene (LAB) compositions and sulfonated, and/or the alkylaryl sulfonates may be blended with linear alkylbenzene sulfonate (LAS) compositions, to form the blended alkylaromatic sulfonates of some embodiments. These compositions and processes for making them may be tailored to serve a variety of end uses, such as detergents in cleaning solutions or for enhanced oil recovery operations, and/or as low foaming and/or hydrotropic additives in detergent formulations, and the like.
    Type: Grant
    Filed: August 9, 2017
    Date of Patent: October 8, 2019
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Tracie L. Owens, Virginia M. Reiner, Mosha H. Zhao, Jingwen Zhang, Beatrice M. Gooding, James R. Bielenberg
  • Patent number: 10351520
    Abstract: Provided herein are various methods for forming alkylaromatic sulfonate compositions and blended alkylaromatic sulfonate compositions, and such compositions themselves. The methods of various embodiments include obtaining a C8-C30 hydrocarbon mixture, optionally treating the mixture to concentrate the mixture in sulfonatable aromatics, and sulfonating the mixture to form the alkylaromatic sulfonates. The mixture or treated mixture may be blended with linear alkyl benzene (LAB) compositions and sulfonated, and/or the alkylaryl sulfonates may be blended with linear alkylbenzene sulfonate (LAS) compositions, to form the blended alkylaromatic sulfonates of some embodiments. These compositions and processes for making them may be tailored to serve a variety of end uses, such as detergents in cleaning solutions or for enhanced oil recovery operations, and/or as low foaming and/or hydrotropic additives in detergent formulations, and the like.
    Type: Grant
    Filed: August 9, 2017
    Date of Patent: July 16, 2019
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Mosha H. Zhao, Virginia M. Reiner, Jingwen Zhang, Tracie L. Owens
  • Patent number: 10351521
    Abstract: Provided herein are various methods for forming alkylaromatic sulfonate compositions and blended alkylaromatic sulfonate compositions, and such compositions themselves. The methods of various embodiments include obtaining a C8-C30 hydrocarbon mixture, optionally treating the mixture to concentrate the mixture in sulfonatable aromatics, and sulfonating the mixture to form the alkylaromatic sulfonates. The mixture or treated mixture may be blended with linear alkyl benzene (LAB) compositions and sulfonated, and/or the alkylaryl sulfonates may be blended with linear alkylbenzene sulfonate (LAS) compositions, to form the blended alkylaromatic sulfonates of some embodiments. These compositions and processes for making them may be tailored to serve a variety of end uses, such as detergents in cleaning solutions or for enhanced oil recovery operations, and/or as low foaming and/or hydrotropic additives in detergent formulations, and the like.
    Type: Grant
    Filed: August 9, 2017
    Date of Patent: July 16, 2019
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Virginia M. Reiner, Jingwen Zhang, Tracie L. Owens, Mosha H. Zhao
  • Patent number: 10227539
    Abstract: Methods are provided for modifying hydrogenation catalysts having silica supports (or other non-alumina supports) with additional alumina, and using such catalysts to achieve unexpectedly superior hydrogenation of feedstocks. The modified hydrogenation catalysts can have a relatively low cracking activity while providing an increased activity for hydrogenation.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: March 12, 2019
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Michael P. Lanci, Stuart L. Soled, Javier Guzman, Sabato Miseo, Thomas E. Green, Joseph E. Baumgartner, Lei Zhang, Christine E. Kliewer, Lukasz Koziol, Kanmi Mao, Tracie L. Owens, Gary P. Schleicher
  • Patent number: 10227535
    Abstract: Methods are provided for modifying hydrogenation catalysts having silica supports (or other non-alumina supports) with additional alumina, and using such catalysts to achieve unexpectedly superior hydrogenation of feedstocks. The modified hydrogenation catalysts can have a relatively low cracking activity while providing an increased activity for hydrogenation.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: March 12, 2019
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Michael P. Lanci, Stuart L. Soled, Javier Guzman, Sabato Miseo, Thomas E. Green, Joseph E. Baumgartner, Lei Zhang, Christine E. Kliewer, Lukasz Koziol, Kanmi Mao, Tracie L. Owens, Gary P. Schleicher, Xiaochun Xu
  • Patent number: 10016747
    Abstract: Methods are provided for using a dewaxing catalyst formed using at least two structure directing agents for production of a lubricant base stock. For example, ZSM-48 crystals formed using multiple directing agents (and/or formulated catalysts made using such crystals) can have an increased activity and/or can provide an improved yield during catalytic production of lubricant base stocks. Additionally or alternately, ZSM-48 crystals formed using multiple directing agents (and/or formulated catalysts made using such crystals) can provide improved aromatic saturation during processing of a feed for lubricant base stock production.
    Type: Grant
    Filed: October 20, 2015
    Date of Patent: July 10, 2018
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Lei Zhang, Sylvain Hantzer, Wenyih F. Lai, Stephen J. McCarthy, Tracie L. Owens
  • Publication number: 20180187105
    Abstract: Systems and methods are provided for performing solvent extraction on heavy neutral base stocks. The aromatic extraction can reduce aromatics content while have a reduced or minimized impact on lubricant properties. This can allow, for example, for correction of color and/or haze for heavy neutral base stocks, such as heavy neutral base stocks formed from a deasphalted oil.
    Type: Application
    Filed: December 15, 2017
    Publication date: July 5, 2018
    Inventors: Tracie L. Owens, Kendall S. Fruchey, Michael B. Carroll, Camden N. Henderson, Lisa I-Ching Yeh, Timothy L. Hilbert
  • Publication number: 20180057453
    Abstract: Provided herein are various methods for forming alkylaromatic sulfonate compositions and blended alkylaromatic sulfonate compositions, and such compositions themselves. The methods of various embodiments include obtaining a C8-C30 hydrocarbon mixture, optionally treating the mixture to concentrate the mixture in sulfonatable aromatics, and sulfonating the mixture to form the alkylaromatic sulfonates. The mixture or treated mixture may be blended with linear alkyl benzene (LAB) compositions and sulfonated, and/or the alkylaryl sulfonates may be blended with linear alkylbenzene sulfonate (LAS) compositions, to form the blended alkylaromatic sulfonates of some embodiments. These compositions and processes for making them may be tailored to serve a variety of end uses, such as detergents in cleaning solutions or for enhanced oil recovery operations, and/or as low foaming and/or hydrotropic additives in detergent formulations, and the like.
    Type: Application
    Filed: August 9, 2017
    Publication date: March 1, 2018
    Inventors: Virginia M. Reiner, Jingwen Zhang, Tracie L. Owens, Mosha H. Zhao
  • Publication number: 20180057452
    Abstract: Provided herein are various methods for forming alkylaromatic sulfonate compositions and blended alkylaromatic sulfonate compositions, and such compositions themselves. The methods of various embodiments include obtaining a C8-C30 hydrocarbon mixture, optionally treating the mixture to concentrate the mixture in sulfonatable aromatics, and sulfonating the mixture to form the alkylaromatic sulfonates. The mixture or treated mixture may be blended with linear alkyl benzene (LAB) compositions and sulfonated, and/or the alkylaryl sulfonates may be blended with linear alkylbenzene sulfonate (LAS) compositions, to form the blended alkylaromatic sulfonates of some embodiments. These compositions and processes for making them may be tailored to serve a variety of end uses, such as detergents in cleaning solutions or for enhanced oil recovery operations, and/or as low foaming and/or hydrotropic additives in detergent formulations, and the like.
    Type: Application
    Filed: August 9, 2017
    Publication date: March 1, 2018
    Inventors: Mosha H. Zhao, Virginia M. Reiner, Jingwen Zhang, Tracie L. Owens
  • Publication number: 20180057451
    Abstract: Provided herein are various methods for forming alkylaromatic sulfonate compositions and blended alkylaromatic sulfonate compositions, and such compositions themselves. The methods of various embodiments include obtaining a C8-C30 hydrocarbon mixture, optionally treating the mixture to concentrate the mixture in sulfonatable aromatics, and sulfonating the mixture to form the alkylaromatic sulfonates. The mixture or treated mixture may be blended with linear alkyl benzene (LAB) compositions and sulfonated, and/or the alkylaryl sulfonates may be blended with linear alkylbenzene sulfonate (LAS) compositions, to form the blended alkylaromatic sulfonates of some embodiments. These compositions and processes for making them may be tailored to serve a variety of end uses, such as detergents in cleaning solutions or for enhanced oil recovery operations, and/or as low foaming and/or hydrotropic additives in detergent formulations, and the like.
    Type: Application
    Filed: August 9, 2017
    Publication date: March 1, 2018
    Inventors: Tracie L. Owens, Virginia M. Reiner, Mosha H. Zhao, Jingwen Zhang, Beatrice M. Gooding, James R. Bielenberg
  • Publication number: 20170282114
    Abstract: The embodiments of the disclosure relate generally to adsorbent beds, adsorbent contactors, and methods of using same. The disclosure includes polymer filaments that include an adsorbent particle, such as a zeolite, metal oxide, metal organic framework. A plurality of fibers composed of the polymer filaments can be formed into an adsorbent bed for use in pressure swing and/or temperature swing adsorption processes. The plurality of fibers can be packed into a bed randomly, spirally wound, or woven into a fabric that can be formed into a contacting structure. The adsorbent particle can be contained within the polymer filament and can interact with a medium having a component for adsorption by being in fluid communication with the medium via tortuous pathways within the polymer.
    Type: Application
    Filed: June 16, 2017
    Publication date: October 5, 2017
    Inventors: Tracie L. Owens, Daniel P. Leta
  • Publication number: 20170284995
    Abstract: A method of screening a hydrocarbon stream for potential toxicological hazards. The method involves providing a hydrocarbon stream; conducting 2-dimensional gas chromatography (2D-GC) analysis to quantify saturates and aromatic distribution in the hydrocarbon stream; identifying 2-8 ring aromatic distribution and weight percentage of 2-8 ring aromatic molecules in the hydrocarbon stream from the 2D-GC analysis; relating the weight percentage of 2-8 ring aromatic molecules in the hydrocarbon stream from the 2D-GC analysis to a mutagenicity index (MI), in which the MI is determined in accordance with ASTM Standard Method E 1687; and assessing a potential toxicological hazard of the hydrocarbon stream based on the weight percentage of 2-8 ring aromatic molecules in the hydrocarbon stream from the 2D-GC analysis and a MI threshold value. The 2-8 ring aromatic distribution preferably includes 3-6 ring aromatics, more preferably 3.5-5.5 ring aromatics.
    Type: Application
    Filed: March 28, 2017
    Publication date: October 5, 2017
    Inventors: Tracie L. Owens, Beatrice M. Gooding, Frank C. Wang, Yogi V. Shukla, Eugenio Sanchez, Charles L. Baker, JR., Roland B. Saeger
  • Publication number: 20170211005
    Abstract: Compositions are provided for lubricant base stocks produced from feeds such as vacuum resid or other 510° C.+ feeds. A feed can be deasphalted and then catalytically and/or solvent processed to form lubricant base stocks, including bright stocks that are resistant to haze formation.
    Type: Application
    Filed: December 27, 2016
    Publication date: July 27, 2017
    Inventors: Lisa I-Ching Yeh, Rugved P. Pathare, Eric B. Senzer, Camden N. Henderson, Tracie L. Owens, Kendall S. Fruchey, Timothy L. Hilbert, Michael B. Carroll, Debra A. Sysyn, Kathleen E. Edwards, Bryan E. Hagee
  • Patent number: 9713787
    Abstract: The embodiments of the disclosure relate generally to adsorbent beds, adsorbent contactors, and methods of using same. The disclosure includes polymer filaments that include an adsorbent particle, such as a zeolite, metal oxide, metal organic framework. A plurality of fibers composed of the polymer filaments can be formed into an adsorbent bed for use in pressure swing and/or temperature swing adsorption processes. The plurality of fibers can be packed into a bed randomly, spirally wound, or woven into a fabric that can be formed into a contacting structure. The adsorbent particle can be contained within the polymer filament and can interact with a medium having a component for adsorption by being in fluid communication with the medium via tortuous pathways within the polymer.
    Type: Grant
    Filed: November 16, 2015
    Date of Patent: July 25, 2017
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Tracie L. Owens, Daniel P. Leta