Patents by Inventor TRACY ALLYN WYNN

TRACY ALLYN WYNN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240319294
    Abstract: A device receives during an RF receive cycle a magnetic resonance signal (250) from an area of interest of a patient (20) which is generated in response to a RF transmit signal (350) of an MRI system (100) during an RF transmit cycle. The device includes: an RF receive coil (301); a detector (330); and a first coupling (840) device adapted to couple to an input of the detector (330) a signal (350) which is proportional to a current flowing through the RF receive coil (301) during the RF transmit cycle. The detector (330) outputs a signal (350), which indicates the magnitude and/or phase of the current flowing through the RF receive coil (301) during the RF transmit cycle. The digital signal (350) may be used to stop MR scanning, and/or to notify a system (100) operator, before harm can occur to the patient (20) due to excessive current in the RF receive coil (301) during the RF transmit cycle.
    Type: Application
    Filed: July 4, 2022
    Publication date: September 26, 2024
    Inventors: Tracy Allyn Wynn, Scott Bradley King, Alton Keel, Timothy Caine Ortiz, Arne Reykowski, Paul Franz Redder, Olli Tapio Friman, Rodrigo Canderon Rico
  • Publication number: 20240230814
    Abstract: A magnetic resonance (MR) system includes an MR receive channel (20) including: an MR coil element (22) configured to receive MR signals in an MR frequency band; an electronic signal processing chain (24) configured to process the MR signals received by the MR coil element to produce processed MR signals, wherein the electronic signal processing chain includes an equalization filter (26); and a signal injector (8, 16, 28, 38, 38D) configured to input a reference radio frequency (RF) signal in the MR frequency band to the signal processing chain, wherein the signal processing chain processes the reference RF signal to generate a processed reference RF signal. Equalizer electronics (30) are configured to adjust the equalization filter based at least on the processed reference RF signal such that the MR receive channel has a flat frequency response over the MR frequency band.
    Type: Application
    Filed: February 23, 2022
    Publication date: July 11, 2024
    Inventors: Rodrigo Calderon Rico, Alton Keel, Tracy Allyn Wynn, Arne Reykowski, Scott Bradley King
  • Publication number: 20240159846
    Abstract: A magnetic resonance (MR) receive coil (18) includes at least one MR coil element (22) configured to receive MR signals excited in a subject disposed in an MR imaging device (10); an antenna (22, 28) comprising the at least one MR coil element (22) or another antenna (28) that is different from the at least one MR coil element; and electronics (24) configured to detect reception of an electromagnetic pulse of interest by the antenna and to perform a coil function based on the detection. The electromagnetic pulse of interest is a radio frequency (RF) pulse generated by the MR imaging device or a magnetic field gradient pulse generated by the MR imaging device.
    Type: Application
    Filed: March 18, 2022
    Publication date: May 16, 2024
    Inventors: Scott Bradley King, Alton Keel, Arne Reykowski, Timothy Caine Ortiz, Paul Franz Redder, Rodrigo Calderon Rico, Tracy Allyn Wynn, Olli Tapio Friman
  • Publication number: 20240133989
    Abstract: A magnetic resonance (MR) system includes an MR receive channel (20) including: an MR coil element (22) configured to receive MR signals in an MR frequency band; an electronic signal processing chain (24) configured to process the MR signals received by the MR coil element to produce processed MR signals, wherein the electronic signal processing chain includes an equalization filter (26); and a signal injector (8, 16, 28, 38, 38D) configured to input a reference radio frequency (RF) signal in the MR frequency band to the signal processing chain, wherein the signal processing chain processes the reference RF signal to generate a processed reference RF signal. Equalizer electronics (30) are configured to adjust the equalization filter based at least on the processed reference RF signal such that the MR receive channel has a flat frequency response over the MR frequency band.
    Type: Application
    Filed: February 23, 2022
    Publication date: April 25, 2024
    Inventors: Rodrigo Calderon Rico, Alton Keel, Tracy Allyn Wynn, Arne Reykowski, Scott Bradley King
  • Publication number: 20230375647
    Abstract: An apparatus (10) includes: a radiofrequency (RF) coil (18); a detune circuit (38) operatively coupled to the RF coil, wherein the detune circuit includes a decoupling inductor (40) configured as a transmitter (TX) inductor; and a harvester (44) coupled to the decoupling inductor for harvesting energy from the decoupling inductor.
    Type: Application
    Filed: August 5, 2021
    Publication date: November 23, 2023
    Inventors: Aasrith Ganti, Tracy Allyn Wynn, Alan Leroy Holland, George randall Duensing
  • Publication number: 20230261375
    Abstract: A radio frequency (RF) circuit is provided for use with a magnetic resonance imaging (MRI) scanner to transmit an RF receive signal to an amplifier circuit, the RF circuit comprising: a transmission line; an antenna electrically connected to a first end portion of the transmission line; an impedance transformation circuit; an impedance matching and detuning circuit electrically connected between the transmission line and the impedance transformation circuit, wherein the impedance matching and detuning circuit includes: multiple reactive impedance elements; and two or more switches operable to controllably switch between configuring the multiple reactive impedance elements to cause matching of overall impedance of the RF circuit to a prescribed input impedance seen at the amplifier circuit at a prescribed RF frequency during a receive mode of the MRI scanner, and to cause an increase of impedance at the antenna, to reduce sensitivity of the antenna to RF signals at the prescribed frequency during an excitation
    Type: Application
    Filed: February 14, 2023
    Publication date: August 17, 2023
    Inventors: Joseph Russell Corea, Gillian Gentry Haemer, Pulkit Malik, Tracy Allyn Wynn
  • Patent number: 11360169
    Abstract: A magnetic resonance (MR) receive device comprises a coil or coil array including at least one radiofrequency (RF) coil element wherein each RF coil element comprises a coil and a preamplifier connected to amplify an output of the RF coil element to generate an amplified RF signal. The MR receive device further includes an RF-over-Fiber module comprising an optical fiber, a photonic device optically coupled to send an optical signal into the optical fiber, and an RF modulator connected to modulate the optical signal by an MR signal comprising the amplified RF signal.
    Type: Grant
    Filed: January 28, 2019
    Date of Patent: June 14, 2022
    Assignee: Koninklijke Philips N.V.
    Inventors: Timothy Ortiz, Tracy Allyn Wynn, Olli Tapio Friman
  • Publication number: 20210396823
    Abstract: A magnetic resonance (MR) receive device comprises a coil or coil array including at least one radiofrequency (RF) coil element wherein each RF coil element comprises a coil and a preamplifier connected to amplify an output of the RF coil element to generate an amplified RF signal. The MR receive device further includes an RF-over-Fiber module comprising an optical fiber, a photonic device optically coupled to send an optical signal into the optical fiber, and an RF modulator connected to modulate the optical signal by an MR signal comprising the amplified RF signal.
    Type: Application
    Filed: January 28, 2019
    Publication date: December 23, 2021
    Inventors: TIMOTHY ORTIZ, TRACY ALLYN WYNN, OLLI TAPIO FRIMAN
  • Publication number: 20190346517
    Abstract: A modular magnetic resonance imaging protection system includes a support, a first platform and a second platform. The support passes through a bore of a magnetic resonance imaging system and includes a first guidance system. The first platform and second platform are each configured to support a patient. The first platform and second platform can each be guided from a carrier to the support through an acoustic shield. The first platform and second platform respectively include a second guidance system and a third guidance system to cooperatively guide the first platform and second platform along the support, into the bore of the magnetic resonance imaging system, and out of the bore of the magnetic resonance imaging system in cooperation with the first guidance system.
    Type: Application
    Filed: December 26, 2017
    Publication date: November 14, 2019
    Inventors: GEORGE RANDALL DUENSING, OLLI TAPIO FRIMAN, EZRA PETRUS ANTONIUS VAN LANEN, TRACY ALLYN WYNN