Patents by Inventor Tracy Matray

Tracy Matray has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6955874
    Abstract: Kits for the multiplexed detection of known, selected nucleotide target sequences are provided. Detection involves the release of identifying tags as a consequence of target recognition. The kits include sets of electrophoretic tag probes or e-tag probes, capture agent and optionally a nuclease. The e-tag probes comprise a detection region and a mobility-defining region called the mobility modifier, both linked to a target-binding moiety. In using the kits, the target-binding moiety of the e-tag probes hybridizes to complementary target sequences followed by nuclease cleavage of the e-tag probes and release of detectable e-tags or e-tag reporters. The mixture is exposed to a capture agent which binds uncleaved and/or partially cleaved e-tag probes, followed by electrophoretic separation. In a multiplexed assay, different released e-tag reporters may be separated and detected providing for target identification.
    Type: Grant
    Filed: April 2, 2001
    Date of Patent: October 18, 2005
    Assignee: Aclara Biosciences, Inc.
    Inventors: Sharat Singh, Tracy Matray, Ahmed Chenna
  • Patent number: 6916612
    Abstract: Probe sets for the multiplexed detection of known, selected nucleotide target sequences are provided. Detection involves the release of identifying tags as a consequence of target recognition. The probe sets include electrophoretic tag probes or “e-tag probes”, comprising a detection region and a mobility-defining region called the mobility modifier, both linked to a target-binding moiety. The target-binding moiety of the e-tag probes hybridizes to complementary target sequences followed by nuclease cleavage of the e-tag probes and release of detectable e-tags or e-tag reporters. The mixture is exposed to a capture agent which binds uncleaved and/or partially cleaved e-tag probes, followed by electrophoretic separation. In a multiplexed assay, different released e-tag reporters may be separated and detected providing for target identification.
    Type: Grant
    Filed: April 2, 2001
    Date of Patent: July 12, 2005
    Assignee: Aclara Biosciences, Inc.
    Inventors: Sharat Singh, Tracy Matray, Ahmed Chenna
  • Publication number: 20050079565
    Abstract: Methods are provided for detecting the formation of complexes of molecules, especially proteins, in a sample, such as a cell or tissue lysate. In one aspect, a cleaving probe specific for a first protein in a complex and one or more binding compounds specific for one or more second proteins in a complex are provided. Upon binding, the cleaving probe is induced to generate an active species, such as singlet oxygen, that cleaves molecular tags attached to the binding compounds only in the local region of the cleaving probe. The released molecular tags are separated from the assay mixture and from one another to provide a readout that is related to the number and types of proteins present in the complex.
    Type: Application
    Filed: August 10, 2004
    Publication date: April 14, 2005
    Inventors: Po-Ying Chan-Hui, Sharat Singh, Hossein Salimi-Moosavi, Hasan Tahir, Gerald Wallweber, Hrair Kirakosssian, Tracy Matray
  • Publication number: 20050048553
    Abstract: Methods and kits are disclosed for determining, either in a homogeneous or heterogeneous assay format, one or more target analytes in a sample using binding compositions coupled to molecular tags by cleavable linkages. Generally, an assay mixture is formed comprising a sample and a reagent comprising multiple such binding compositions under conditions that permit stable complexes to form between the binding compositions and analytes. In one aspect of the invention, the interaction between the binding compositions and their respective binding sites brings a cleavage-inducing moiety into close proximity to cleavable linkages or provides a recognizable substrate for a cleavage-inducing moiety. In this way, one or more molecular tags for each of the analytes are released from the complexes. Released molecular tags are chromatographically separated and the presence and/or amount of the target analytes are determined based on the analysis of the released and separated molecular tags.
    Type: Application
    Filed: August 16, 2004
    Publication date: March 3, 2005
    Inventors: Ahmed Chenna, Tracy Matray, Vincent Hernandez, Herbert Hooper, Sharat Singh
  • Publication number: 20050049408
    Abstract: Oligonucleotides with a novel sugar-phosphate backbone containing at least one internucleoside 3?-NHP(O)(S?)O-5? linkage, and methods of synthesizing and using the inventive oligonucleotides are provided. The inventive thiophosphoramidate oligonucleotides were found to retain the high RNA binding affinity of the parent oligonucleotide N3??P5? phosphoramidates and to exhibit a much higher acid stability.
    Type: Application
    Filed: October 18, 2004
    Publication date: March 3, 2005
    Inventors: Sergei Gryaznov, Krisztina Pongracz, Tracy Matray
  • Publication number: 20040265858
    Abstract: Probe sets for the multiplexed detection of the binding of, or interaction between, one or more ligands and target antiligands are provided. Detection involves the release of identifying tags as a consequence of target recognition. The probe sets include electrophoretic tag probes or e-tag probes, comprising a detection region and a mobility-defining region called the mobility modifier, both linked to a target-binding moiety. Target antiligands are contacted with a set of e-tag probes and the contacted antiligands are treated with a selected cleaving agent resulting in a mixture of e-tag reporters and uncleaved and/or partially cleaved e-tag probes. The mixture is exposed to a capture agent effective to bind to uncleaved or partially cleaved e-tag probes, followed by electrophoretic separation. In a multiplexed assay, different released e-tag reporters may be separated and detected providing for target identification.
    Type: Application
    Filed: February 13, 2004
    Publication date: December 30, 2004
    Inventors: Sharat Singh, Tracy Matray, Ahmed Chenna
  • Patent number: 6835826
    Abstract: Oligonucleotides with a novel sugar-phosphate backbone containing at least one internucleoside 3′-NHP(O)(S−)O-5′ linkage, and methods of synthesizing and using the inventive oligonucleotides are provided. The inventive thiophosphoramidate oligonucleotides were found to retain the high RNA binding affinity of the parent oligonucleotide N3′→P5′ phosphoramidates and to exhibit a much higher acid stability.
    Type: Grant
    Filed: June 17, 2003
    Date of Patent: December 28, 2004
    Assignee: Geron Corporation
    Inventors: Sergei Gryaznov, Krisztina Pongracz, Tracy Matray
  • Publication number: 20040197815
    Abstract: Families of compositions are provided as labels, referred to as eTag reporters for attaching to polymeric compounds and assaying based on release of the eTag reporters from the polymeric compound and separation and detection. For oligonucleotides, the eTag reporters are synthesized at the end of the oligonucleotide by using phosphiste or phosphate chemistry, whereby mass-modifying regions, charge-modifying regions and detectable regions are added sequentially to produce the eTag labeled reporters. By using small building blocks and varying their combination large numbers of different eTag reporters can be readily produced attached to the oligonucleotide of interest for identification. Protocols are used that release the eTag reporter when the target sequence is present in the sample.
    Type: Application
    Filed: April 22, 2004
    Publication date: October 7, 2004
    Inventors: Sharat Singh, Tracy Matray, Hossein Salimi-Moosavi
  • Publication number: 20040166529
    Abstract: Probe sets for the multiplexed detection of the binding of, or interaction between, one or more ligands and target antiligands are provided. Detection involves the release of identifying tags as a consequence of target recognition. The probe sets include electrophoretic tag probes or e-tag probes, comprising a detection region and a mobility-defining region called the mobility modifier, both linked to a target-binding moiety. Target antiligands are contacted with a set of e-tag probes and the contacted antiligands are treated with a selected cleaving agent resulting in a mixture of e-tag reporters and uncleaved and/or partially cleaved e-tag probes. The mixture is exposed to a capture agent effective to bind to uncleaved or partially cleaved e-tag probes, followed by electrophoretic separation. In a multiplexed assay, different released e-tag reporters may be separated and detected providing for target identification.
    Type: Application
    Filed: April 21, 2004
    Publication date: August 26, 2004
    Inventors: Sharat Singh, Tracy Matray, Ahmed Chenna
  • Patent number: 6770439
    Abstract: Probe sets for the multiplexed detection of the binding of, or interaction between, one or more ligands and target antiligands are provided. Detection involves the release of identifying tags as a consequence of target recognition. The probe sets include electrophoretic tag probes or e-tag probes, comprising a detection region and a mobility-defining region called the mobility modifier, both linked to a target-binding moiety. Target antiligands are contacted with a set of e-tag probes and the contacted antiligands are treated with a selected cleaving agent resulting in a mixture of e-tag reporters and uncleaved and/or partially cleaved e-tag probes. The mixture is exposed to a capture agent effective to bind to uncleaved or partially cleaved e-tag probes, followed by electrophoretic separation. In a multiplexed assay, different released e-tag reporters may be separated and detected providing for target identification.
    Type: Grant
    Filed: April 2, 2001
    Date of Patent: August 3, 2004
    Inventors: Sharat Singh, Tracy Matray, Ahmed Chenna
  • Publication number: 20040063114
    Abstract: Families of compositions are provided as labels, referred to as eTag reporters for attaching to polymeric compounds and assaying based on release of the eTag reporters from the polymeric compound and separation and detection. For oligonucleotides, the eTag reporters are synthesized at the end of the oligonucleotide by using phosphite or phosphate chemistry, whereby mass-modifying regions, charge-modifying regions and detectable regions are added sequentially to produce the eTag labeled reporters. By using small building blocks and varying their combination large numbers of different eTag reporters can be readily produced attached to a binding compound specific for the target compound of interest for identification. Protocols are used that release the eTag reporter when the target compound is present in the sample.
    Type: Application
    Filed: April 18, 2003
    Publication date: April 1, 2004
    Inventors: Sharat Singh, Tracy Matray, Hossein Salimi-Moosavi
  • Patent number: 6673550
    Abstract: Electrophoretic probes comprising fluorescent compounds as detection groups and mobility modifiers are disclosed for the multiplexed detection of the binding of, or interaction between, one or more ligands and target antiligands are provided. In one embodiment, detection involves the release of identifying tags as a consequence of target recognition. Target antiligands are contacted with a set of e-tag probes and the contacted antiligands are treated with a selected cleaving agent resulting in a mixture of e-tag reporters. Typically, uncleaved or partially cleaved e-tag probes are removed and the mixture of e-tag reporters is separated by any technique that provides for separation by mass or mass to charge ratio and the like and detected to provide for target identification.
    Type: Grant
    Filed: November 9, 2001
    Date of Patent: January 6, 2004
    Assignee: Aclara Biosciences, Inc.
    Inventors: Tracy Matray, Vincent Hernandez, Sharat Singh
  • Publication number: 20030235832
    Abstract: Methods and kits are disclosed for determining, either in a homogeneous or heterogeneous assay format, one or more target analytes in a sample using binding compositions coupled to molecular tags by cleavable linkages. Generally, an assay mixture is formed comprising a sample and a reagent comprising multiple such binding compositions under conditions that permit stable complexes to form between the binding compositions and analytes. In one aspect of the invention, the interaction between the binding compositions and their respective binding sites brings a cleavage-inducing moiety into close proximity to cleavable linkages or provides a recognizable substrate for a cleavage-inducing moiety. In this way, one or more molecular tags for each of the analytes are released from the complexes. Released molecular tags are chromatographically separated and the presence and/or amount of the target analytes are determined based on the analysis of the released and separated molecular tags.
    Type: Application
    Filed: November 8, 2002
    Publication date: December 25, 2003
    Inventors: Ahmed Chenna, Tracy Matray, Vincent Hernandez, Herbert Hooper, Sharat Singh
  • Publication number: 20030212032
    Abstract: Oligonucleotides with a novel sugar-phosphate backbone containing at least one internucleoside 3′-NHP(O)(S−)O-5′ linkage, and methods of synthesizing and using the inventive oligonucleotides are provided. The inventive thiophosphoramidate oligonucleotides were found to retain the high RNA binding affinity of the parent oligonucleotide N3′→P5′ phosphoramidates and to exhibit a much higher acid stability.
    Type: Application
    Filed: June 17, 2003
    Publication date: November 13, 2003
    Applicant: GERON CORPORATION
    Inventors: Sergei Gryaznov, Krisztina Pongracz, Tracy Matray
  • Patent number: 6627400
    Abstract: Families of compositions are provided as labels, referred to as eTag reporters for attaching to polymeric compounds and assaying based on release of the eTag reporters from the polymeric compound and separation and detection. For oligonucleotides, the eTag reporters are synthesized at the end of the oligonucleotide by using phosphite or phosphate chemistry, whereby mass-modifying regions, charge-modifying regions and detectable regions are added sequentially to produce the eTag labeled reporters. By using small building blocks and varying their combination large numbers of different eTag reporters can be readily produced attached to a binding compound specific for the target compound of interest for identification. Protocols are used that release the eTag reporter when the target compound is present in the sample.
    Type: Grant
    Filed: October 27, 2000
    Date of Patent: September 30, 2003
    Assignee: Aclara Biosciences, Inc.
    Inventors: Sharat Singh, Tracy Matray
  • Patent number: 6608036
    Abstract: Oligonucleotides with a novel sugar-phosphate backbone containing at least one internucleoside 3′-NHP(O)(S−)O-5′ linkage, and methods of synthesizing and using the inventive oligonucleotides are provided. The inventive thiophosphoramidate oligonucleotides were found to retain the high RNA binding affinity of the parent oligonucleotide N3′→P5′ phosphoramidates and to exhibit a much higher acid stability.
    Type: Grant
    Filed: September 8, 2000
    Date of Patent: August 19, 2003
    Assignee: Geron Corporation
    Inventors: Sergei Gryaznov, Krisztina Pongracz, Tracy Matray
  • Publication number: 20020146726
    Abstract: Electrophoretic probes comprising fluorescent compounds as detection groups and mobility modifiers are disclosed for the multiplexed detection of the binding of, or interaction between, one or more ligands and target antiligands are provided. In one embodiment, detection involves the release of identifying tags as a consequence of target recognition. Target antiligands are contacted with a set of e-tag probes and the contacted antiligands are treated with a selected cleaving agent resulting in a mixture of e-tag reporters. Typically, uncleaved or partially cleaved e-tag probes are removed and the mixture of e-tag reporters is separated by any technique that provides for separation by mass or mass to charge ratio and the like and detected to provide for target identification.
    Type: Application
    Filed: November 9, 2001
    Publication date: October 10, 2002
    Applicant: Aclara BioSciences, Inc.
    Inventors: Tracy Matray, Vincent Hernandez, Sharat Singh
  • Publication number: 20020142329
    Abstract: Probe sets for the multiplexed detection of the binding of, or interaction between, one or more ligands and target antiligands are provided. Detection involves the release of identifying tags as a consequence of target recognition. The probe sets include electrophoretic tag probes or e-tag probes, comprising a detection region and a mobility-defining region called the mobility modifier, both linked to a target-binding moiety. Target antiligands are contacted with a set of e-tag probes and the contacted antiligands are treated with a selected cleaving agent resulting in a mixture of e-tag reporters and uncleaved and/or partially cleaved e-tag probes. The mixture is exposed to a capture agent effective to bind to uncleaved or partially cleaved e-tag probes, followed by electrophoretic separation. In a multiplexed assay, different released e-tag reporters may be separated and detected providing for target identification.
    Type: Application
    Filed: November 9, 2001
    Publication date: October 3, 2002
    Applicant: Aclara BioSciences, Inc.
    Inventors: Tracy Matray, Vincent Hernandez, Sharat Singh
  • Publication number: 20020090616
    Abstract: Probe sets for the multiplexed detection of the binding of, or interaction between, one or more ligands and target antiligands are provided. Detection involves the release of identifying tags as a consequence of target recognition. The probe sets include electrophoretic tag probes or e-tag probes, comprising a detection region and a mobility-defining region called the mobility modifier, both linked to a target-binding moiety. Target antiligands are contacted with a set of e-tag probes and the contacted antiligands are treated with a selected cleaving agent resulting in a mixture of e-tag reporters and uncleaved and/or partially cleaved e-tag probes. The mixture is exposed to a capture agent effective to bind to uncleaved or partially cleaved e-tag probes, followed by electrophoretic separation. In a multiplexed assay, different released e-tag reporters may be separated and detected providing for target identification.
    Type: Application
    Filed: April 2, 2001
    Publication date: July 11, 2002
    Inventors: Sharat Singh, Tracy Matray, Ahmed Chenna
  • Publication number: 20020015954
    Abstract: Probe sets for the multiplexed detection of known, selected nucleotide target sequences are provided. Detection involves the release of identifying tags as a consequence of target recognition. The probe sets include electrophoretic tag probes or “e-tag probes”, comprising a detection region and a mobility-defining region called the mobility modifier, both linked to a target-binding moiety. The target-binding moiety of the e-tag probes hybridizes to complementary target sequences followed by nuclease cleavage of the e-tag probes and release of detectable e-tags or e-tag reporters. The mixture is exposed to a capture agent which binds uncleaved and/or partially cleaved e-tag probes, followed by electrophoretic separation. In a multiplexed assay, different released e-tag reporters may be separated and detected providing for target identification.
    Type: Application
    Filed: April 2, 2001
    Publication date: February 7, 2002
    Inventors: Sharat Singh, Tracy Matray, Ahmed Chenna