Patents by Inventor TRAVIS KOH

TRAVIS KOH has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230352264
    Abstract: Systems and methods for creating arbitrarily-shaped ion energy distribution functions using shaped-pulse-bias. In an embodiment, a method includes applying a negative jump voltage to an electrode of a process chamber to set a wafer voltage for a wafer, modulating an amplitude of the wafer voltage to produce a train of groups of pulse bursts with different amplitudes, and repeating the modulating of the amplitude of the wafer voltage to repeat the train of the groups of pulse bursts to create an ion energy distribution function having more than one energy peak. In some embodiments, the negative jump voltage can include a single-cycle voltage waveform with a voltage ramp during an ion-current phase, in which the voltage ramp can be positive or negative and a duration of the ion-current phase can comprise more or less than fifty percent of a period of the waveform.
    Type: Application
    Filed: July 11, 2023
    Publication date: November 2, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Leonid DORF, Travis KOH, Olivier LUERE, Olivier JOUBERT, Philip A. KRAUS, Rajinder DHINDSA, James ROGERS
  • Patent number: 11728124
    Abstract: Systems and methods for creating arbitrarily-shaped ion energy distribution functions using shaped-pulse-bias. In an embodiment, a method includes applying a positive jump voltage to an electrode of a process chamber to neutralize a wafer surface, applying a negative jump voltage to the electrode to set a wafer voltage, and modulating the amplitude of the wafer voltage to produce a predetermined number of pulses to determine an ion energy distribution function. In another embodiment a method includes applying a positive jump voltage to an electrode of a process chamber to neutralize a wafer surface, applying a negative jump voltage to the electrode to set a wafer voltage, and applying a ramp voltage to the electrode that overcompensates for ion current on the wafer or applying a ramp voltage to the electrode that undercompensates for ion current on the wafer.
    Type: Grant
    Filed: July 16, 2021
    Date of Patent: August 15, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Leonid Dorf, Travis Koh, Olivier Luere, Olivier Joubert, Philip A. Kraus, Rajinder Dhindsa, James Rogers
  • Publication number: 20210343496
    Abstract: Systems and methods for creating arbitrarily-shaped ion energy distribution functions using shaped-pulse-bias. In an embodiment, a method includes applying a positive jump voltage to an electrode of a process chamber to neutralize a wafer surface, applying a negative jump voltage to the electrode to set a wafer voltage, and modulating the amplitude of the wafer voltage to produce a predetermined number of pulses to determine an ion energy distribution function. In another embodiment a method includes applying a positive jump voltage to an electrode of a process chamber to neutralize a wafer surface, applying a negative jump voltage to the electrode to set a wafer voltage, and applying a ramp voltage to the electrode that overcompensates for ion current on the wafer or applying a ramp voltage to the electrode that undercompensates for ion current on the wafer.
    Type: Application
    Filed: July 16, 2021
    Publication date: November 4, 2021
    Inventors: LEONID DORF, TRAVIS KOH, OLIVIER LUERE, OLIVIER JOUBERT, PHILIP A. KRAUS, RAJINDER DHINDSA, JAMES ROGERS
  • Patent number: 11069504
    Abstract: Systems and methods for creating arbitrarily-shaped ion energy distribution functions using shaped-pulse—bias. In an embodiment, a method includes applying a positive jump voltage to an electrode of a process chamber to neutralize a wafer surface, applying a negative jump voltage to the electrode to set a wafer voltage, and modulating the amplitude of the wafer voltage to produce a predetermined number of pulses to determine an ion energy distribution function. In another embodiment a method includes applying a positive jump voltage to an electrode of a process chamber to neutralize a wafer surface, applying a negative jump voltage to the electrode to set a wafer voltage, and applying a ramp voltage to the electrode that overcompensates for ion current on the wafer or applying a ramp voltage to the electrode that undercompensates for ion current on the wafer.
    Type: Grant
    Filed: May 5, 2020
    Date of Patent: July 20, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Leonid Dorf, Travis Koh, Olivier Luere, Olivier Joubert, Philip A. Kraus, Rajinder Dhindsa, James Rogers
  • Publication number: 20210134561
    Abstract: Systems and methods for tunable workpiece biasing in a plasma reactor are provided herein. In some embodiments, a system includes: a plasma chamber that performs plasma processing on a workpiece, a first pulsed voltage source, coupled directly to a workpiece, a second pulsed voltage source, coupled capacitively to the workpiece, and a biasing controller comprising one or more processors, and memory, wherein the memory comprises a set of computer instructions that when executed by the one or more processors, independently controls the first pulsed voltage source and the second pulsed voltage source based on one or more parameters of the first pulsed voltage source and the second pulsed voltage source in order to tailor ion energy distribution of the flux of ions directed to the workpiece.
    Type: Application
    Filed: January 8, 2021
    Publication date: May 6, 2021
    Inventors: Travis KOH, Philip Allan KRAUS, Leonid DORF, Prabu GOPALRAJA
  • Patent number: 10923320
    Abstract: Systems and methods for tunable workpiece biasing in a plasma reactor are provided herein. In some embodiments, a system includes: a plasma chamber that performs plasma processing on a workpiece, a first pulsed voltage source, coupled directly to a workpiece, a second pulsed voltage source, coupled capacitively to the workpiece, and a biasing controller comprising one or more processors, and memory, wherein the memory comprises a set of computer instructions that when executed by the one or more processors, independently controls the first pulsed voltage source and the second pulsed voltage source based on one or more parameters of the first pulsed voltage source and the second pulsed voltage source in order to tailor ion energy distribution of the flux of ions directed to the workpiece.
    Type: Grant
    Filed: July 24, 2019
    Date of Patent: February 16, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Travis Koh, Philip Allan Kraus, Leonid Dorf, Prabu Gopalraja
  • Publication number: 20210028012
    Abstract: Embodiments include a method of processing a substrate. In an embodiment, the method comprises flowing one or more source gasses into a processing chamber, and inducing a plasma from the source gases with a plasma source that is operated in a first mode. In an embodiment, the method may further comprise biasing the substrate with a DC power source that is operated in a second mode. In an embodiment, the method may further comprise depositing a film on the substrate.
    Type: Application
    Filed: October 14, 2020
    Publication date: January 28, 2021
    Inventors: Kelvin Chan, Travis Koh, Simon Huang, Philip Allan Kraus
  • Patent number: 10840086
    Abstract: Embodiments include a method of processing a substrate. In an embodiment, the method comprises flowing one or more source gasses into a processing chamber, and inducing a plasma from the source gases with a plasma source that is operated in a first mode. In an embodiment, the method may further comprise biasing the substrate with a DC power source that is operated in a second mode. In an embodiment, the method may further comprise depositing a film on the substrate.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: November 17, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Kelvin Chan, Travis Koh, Simon Huang, Philip Allan Kraus
  • Publication number: 20200340858
    Abstract: Embodiments disclosed herein include an optical sensor system. In an embodiment, the optical sensor system comprises a processing chamber and a sensor. In an embodiment, the sensor comprises a first diffraction grating oriented in a first direction, a second diffraction grating oriented in a second direction, and a detector for detecting electromagnetic radiation diffracted from the first grating and the second grating. In an embodiment, the optical sensor system further comprises an optical coupling element, where the optical coupling element optically couples an interior of the processing chamber to the sensor.
    Type: Application
    Filed: March 24, 2020
    Publication date: October 29, 2020
    Inventors: Philip Allan Kraus, Kelvin Chan, Travis Koh, Blake Erickson, Upendra Ummethala
  • Publication number: 20200266022
    Abstract: Systems and methods for creating arbitrarily-shaped ion energy distribution functions using shaped-pulse—bias. In an embodiment, a method includes applying a positive jump voltage to an electrode of a process chamber to neutralize a wafer surface, applying a negative jump voltage to the electrode to set a wafer voltage, and modulating the amplitude of the wafer voltage to produce a predetermined number of pulses to determine an ion energy distribution function. In another embodiment a method includes applying a positive jump voltage to an electrode of a process chamber to neutralize a wafer surface, applying a negative jump voltage to the electrode to set a wafer voltage, and applying a ramp voltage to the electrode that overcompensates for ion current on the wafer or applying a ramp voltage to the electrode that undercompensates for ion current on the wafer.
    Type: Application
    Filed: May 5, 2020
    Publication date: August 20, 2020
    Inventors: LEONID DORF, TRAVIS KOH, OLIVIER LUERE, OLIVIER JOUBERT, PHILIP A. KRAUS, RAJINDER DHINDSA, JAMES ROGERS
  • Patent number: 10685807
    Abstract: Systems and methods for creating arbitrarily-shaped ion energy distribution functions using shaped-pulse-bias. In an embodiment, a method includes applying a positive jump voltage to an electrode of a process chamber to neutralize a wafer surface, applying a negative jump voltage to the electrode to set a wafer voltage, and modulating the amplitude of the wafer voltage to produce a predetermined number of pulses to determine an ion energy distribution function. In another embodiment a method includes applying a positive jump voltage to an electrode of a process chamber to neutralize a wafer surface, applying a negative jump voltage to the electrode to set a wafer voltage, and applying a ramp voltage to the electrode that overcompensates for ion current on the wafer or applying a ramp voltage to the electrode that undercompensates for ion current on the wafer.
    Type: Grant
    Filed: May 7, 2019
    Date of Patent: June 16, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Leonid Dorf, Travis Koh, Olivier Luere, Olivier Joubert, Philip A. Kraus, Rajinder Dhindsa, James Rogers
  • Publication number: 20190348258
    Abstract: Systems and methods for tunable workpiece biasing in a plasma reactor are provided herein. In some embodiments, a system includes: a plasma chamber that performs plasma processing on a workpiece, a first pulsed voltage source, coupled directly to a workpiece, a second pulsed voltage source, coupled capacitively to the workpiece, and a biasing controller comprising one or more processors, and memory, wherein the memory comprises a set of computer instructions that when executed by the one or more processors, independently controls the first pulsed voltage source and the second pulsed voltage source based on one or more parameters of the first pulsed voltage source and the second pulsed voltage source in order to tailor ion energy distribution of the flux of ions directed to the workpiece.
    Type: Application
    Filed: July 24, 2019
    Publication date: November 14, 2019
    Inventors: TRAVIS KOH, PHILIP ALLAN KRAUS, LEONID DORF, PRABU GOPALRAJA
  • Publication number: 20190333764
    Abstract: Embodiments include a method of processing a substrate. In an embodiment, the method comprises flowing one or more source gasses into a processing chamber, and inducing a plasma from the source gases with a plasma source that is operated in a first mode. In an embodiment, the method may further comprise biasing the substrate with a DC power source that is operated in a second mode. In an embodiment, the method may further comprise depositing a film on the substrate.
    Type: Application
    Filed: April 27, 2018
    Publication date: October 31, 2019
    Inventors: Kelvin CHAN, Travis KOH, Simon HUANG, Philip Allan KRAUS
  • Publication number: 20190259562
    Abstract: Systems and methods for creating arbitrarily-shaped ion energy distribution functions using shaped-pulse-bias. In an embodiment, a method includes applying a positive jump voltage to an electrode of a process chamber to neutralize a wafer surface, applying a negative jump voltage to the electrode to set a wafer voltage, and modulating the amplitude of the wafer voltage to produce a predetermined number of pulses to determine an ion energy distribution function. In another embodiment a method includes applying a positive jump voltage to an electrode of a process chamber to neutralize a wafer surface, applying a negative jump voltage to the electrode to set a wafer voltage, and applying a ramp voltage to the electrode that overcompensates for ion current on the wafer or applying a ramp voltage to the electrode that undercompensates for ion current on the wafer.
    Type: Application
    Filed: May 7, 2019
    Publication date: August 22, 2019
    Inventors: LEONID DORF, TRAVIS KOH, OLIVIER LUERE, OLIVIER JOUBERT, PHILIP A. KRAUS, RAJINDER DHINDSA, JAMES ROGERS
  • Patent number: 10373804
    Abstract: Systems and methods for tunable workpiece biasing in a plasma reactor are provided herein. In some embodiments, a system includes: a plasma chamber that performs plasma processing on a workpiece, a first pulsed voltage source, coupled directly to a workpiece, a second pulsed voltage source, coupled capacitively to the workpiece, and a biasing controller comprising one or more processors, and memory, wherein the memory comprises a set of computer instructions that when executed by the one or more processors, independently controls the first pulsed voltage source and the second pulsed voltage source based on one or more parameters of the first pulsed voltage source and the second pulsed voltage source in order to tailor ion energy distribution of the flux of ions directed to the workpiece.
    Type: Grant
    Filed: February 3, 2017
    Date of Patent: August 6, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Travis Koh, Philip Allan Kraus, Leonid Dorf, Prabu Gopalraja
  • Patent number: 10312048
    Abstract: Systems and methods for creating arbitrarily-shaped ion energy distribution functions using shaped-pulse-bias. In an embodiment, a method includes applying a positive jump voltage to an electrode of a process chamber to neutralize a wafer surface, applying a negative jump voltage to the electrode to set a wafer voltage, and modulating the amplitude of the wafer voltage to produce a predetermined number of pulses to determine an ion energy distribution function. In another embodiment a method includes applying a positive jump voltage to an electrode of a process chamber to neutralize a wafer surface, applying a negative jump voltage to the electrode to set a wafer voltage, and applying a ramp voltage to the electrode that overcompensates for ion current on the wafer or applying a ramp voltage to the electrode that undercompensates for ion current on the wafer.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: June 4, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Leonid Dorf, Travis Koh, Olivier Luere, Olivier Joubert, Philip A. Kraus, Rajinder Dhindsa, James Hugh Rogers
  • Patent number: 10115566
    Abstract: Methods and apparatus for controlling a magnetic field in a plasma chamber are provided herein. In some embodiments, a process chamber liner may include a cylindrical body, an inner electromagnetic cosine-theta (cos ?) coil ring including a first plurality of inner coils embedded in the body and configured to generate a magnetic field in a first direction, and an outer electromagnetic cosine-theta (cos ?) coil ring including a second plurality of outer coils embedded in the body and configured to generate a magnetic field in a second direction orthogonal to the first direction, wherein the outer electromagnetic cos ? coil ring is disposed concentrically about the inner electromagnetic cos ? coil ring.
    Type: Grant
    Filed: February 21, 2017
    Date of Patent: October 30, 2018
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Steven Lane, Tza-Jing Gung, Kartik Ramaswamy, Travis Koh, Joseph F. Aubuchon, Yang Yang
  • Publication number: 20180226225
    Abstract: Systems and methods for tunable workpiece biasing in a plasma reactor are provided herein. In some embodiments, a system includes: a plasma chamber that performs plasma processing on a workpiece, a first pulsed voltage source, coupled directly to a workpiece, a second pulsed voltage source, coupled capacitively to the workpiece, and a biasing controller comprising one or more processors, and memory, wherein the memory comprises a set of computer instructions that when executed by the one or more processors, independently controls the first pulsed voltage source and the second pulsed voltage source based on one or more parameters of the first pulsed voltage source and the second pulsed voltage source in order to tailor ion energy distribution of the flux of ions directed to the workpiece.
    Type: Application
    Filed: February 3, 2017
    Publication date: August 9, 2018
    Inventors: TRAVIS KOH, PHILIP ALLAN KRAUS, LEONID DORF, PRABU GOPALRAJA
  • Publication number: 20180166249
    Abstract: Systems and methods for creating arbitrarily-shaped ion energy distribution functions using shaped-pulse-bias. In an embodiment, a method includes applying a positive jump voltage to an electrode of a process chamber to neutralize a wafer surface, applying a negative jump voltage to the electrode to set a wafer voltage, and modulating the amplitude of the wafer voltage to produce a predetermined number of pulses to determine an ion energy distribution function. In another embodiment a method includes applying a positive jump voltage to an electrode of a process chamber to neutralize a wafer surface, applying a negative jump voltage to the electrode to set a wafer voltage, and applying a ramp voltage to the electrode that overcompensates for ion current on the wafer or applying a ramp voltage to the electrode that undercompensates for ion current on the wafer.
    Type: Application
    Filed: December 7, 2017
    Publication date: June 14, 2018
    Inventors: Leonid DORF, Travis KOH, Olivier LUERE, Olivier JOUBERT, Philip A. KRAUS, Rajinder DHINDSA, JAMES HUGH ROGERS
  • Publication number: 20170358431
    Abstract: Systems and methods for controlling a voltage waveform at a substrate during plasma processing include applying a shaped pulse bias waveform to a substrate support, the substrate support including an electrostatic chuck, a chucking pole, a substrate support surface and an electrode separated from the substrate support surface by a layer of dielectric material. The systems and methods further include capturing a voltage representative of a voltage at a substrate positioned on the substrate support surface and iteratively adjusting the shaped pulse bias waveform based on the captured signal. In a plasma processing system a thickness and a composition of a layer of dielectric material separating the electrode and the substrate support surface can be selected such that a capacitance between the electrode and the substrate support surface is at least an order of magnitude greater than a capacitance between the substrate support surface and a plasma surface.
    Type: Application
    Filed: June 8, 2017
    Publication date: December 14, 2017
    Inventors: LEONID DORF, JAMES HUGH ROGERS, OLIVIER LUERE, TRAVIS KOH, RAJINDER DHINDSA, SUNIL SRINIVASAN