Patents by Inventor Travis Rowe
Travis Rowe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20200306064Abstract: The techniques of this disclosure generally relate to a modular stent device that is deployed via supra aortic access through the brachiocephalic artery. The modular stent device is a base or anchor component to which additional modular stent devices can be attached to exclude diseased areas of the aorta while at the same time allowing perfusion of the left common carotid artery and the left subclavian artery.Type: ApplicationFiled: March 28, 2019Publication date: October 1, 2020Inventors: Keith Perkins, Zachary Borglin, Mark Stiger, Julie Benton, Steven Claessens, Travis Rowe, Mark Young
-
Patent number: 10456282Abstract: In accordance with one embodiment, a helical anchor is provided in a relaxed state. During deployment, a distal portion of the helical anchor is superelastically deformed to protrude longitudinally. The longitudinally protruding distal portion of the helical anchor is longitudinally advanced to cause the distal portion to pierce a prosthesis and a vessel wall. The distal portion returns to the relaxed state after passing through the prosthesis and the vessel wall. By superelastically deforming the distal portion during deployment, it is easier to cause the anchor to penetrate the prosthesis and the vessel wall. Further, by having the anchor return to its relaxed state after passing through the prosthesis and vessel wall, better clamping of the prosthesis to the vessel wall is achieved.Type: GrantFiled: April 6, 2017Date of Patent: October 29, 2019Assignee: MEDTRONIC VASCULAR, INC.Inventor: Travis Rowe
-
Patent number: 10441446Abstract: A prosthesis includes a first wire bent into a first waveform and spirally wrapped into a first helix having a plurality of windings that form a hollow cylindrical shape and a second wire bent into a second waveform and spirally wrapped into a second helix having a plurality of windings that form a hollow cylindrical shape. The first and second wires are disposed relative to each other such that the plurality of windings of the first wire and the plurality of windings of the second wire are disposed about a common longitudinal axis and the plurality of windings of the first wire and the plurality of windings of the second wire are axially offset from each other, with windings of the plurality of windings of the first wire alternating or interwoven between windings of the plurality of windings of the second wire along a length of the prosthesis.Type: GrantFiled: August 31, 2017Date of Patent: October 15, 2019Assignee: Medtronic Vascular, Inc.Inventors: Travis Rowe, Gustaf Belt
-
Publication number: 20190083265Abstract: A venous valve prosthesis includes a frame and a prosthetic valve coupled to the frame. With the venous valve prosthesis implanted in a vein, the prosthetic valve includes a closed configuration wherein an outer surface of the prosthetic valve is in contact with a wall of the vein around a circumference of the prosthetic valve to prevent blood from flowing past the prosthetic valve between the wall of the vein and the outer surface of the prosthetic valve. The prosthetic valve is configured to move to an open configuration such that at least a portion of an outer wall of the prosthetic valve partially collapses away from the wall of the vein in response to antegrade blood flow through the vein to enable blood flow between the outer surface of the prosthetic valve and the wall of the vein.Type: ApplicationFiled: November 19, 2018Publication date: March 21, 2019Inventors: Jeffery Argentine, Todd Malsbary, Keith Perkins, Travis Rowe
-
Publication number: 20190060092Abstract: A prosthesis includes a first wire bent into a first waveform and spirally wrapped into a first helix having a plurality of windings that form a hollow cylindrical shape and a second wire bent into a second waveform and spirally wrapped into a second helix having a plurality of windings that form a hollow cylindrical shape. The first and second wires are disposed relative to each other such that the plurality of windings of the first wire and the plurality of windings of the second wire are disposed about a common longitudinal axis and the plurality of windings of the first wire and the plurality of windings of the second wire are axially offset from each other, with windings of the plurality of windings of the first wire alternating or interwoven between windings of the plurality of windings of the second wire along a length of the prosthesis.Type: ApplicationFiled: August 31, 2017Publication date: February 28, 2019Inventors: Travis Rowe, Gustaf Belt
-
Patent number: 10143554Abstract: A venous valve prosthesis includes a frame and a prosthetic valve coupled to the frame. With the venous valve prosthesis implanted in a vein, the prosthetic valve includes a closed configuration wherein an outer surface of the prosthetic valve is in contact with a wall of the vein around a circumference of the prosthetic valve to prevent blood from flowing past the prosthetic valve between the wall of the vein and the outer surface of the prosthetic valve. The prosthetic valve is configured to move to an open configuration such that at least a portion of an outer wall of the prosthetic valve partially collapses away from the wall of the vein in response to antegrade blood flow through the vein to enable blood flow between the outer surface of the prosthetic valve and the wall of the vein.Type: GrantFiled: December 3, 2015Date of Patent: December 4, 2018Assignee: Medtronic Vascular, Inc.Inventors: Jeffery Argentine, Todd Malsbary, Keith Perkins, Travis Rowe
-
Publication number: 20180289518Abstract: In accordance with one embodiment, a helical anchor is provided in a relaxed state. During deployment, a distal portion of the helical anchor is superelastically deformed to protrude longitudinally. The longitudinally protruding distal portion of the helical anchor is longitudinally advanced to cause the distal portion to pierce a prosthesis and a vessel wall. The distal portion returns to the relaxed state after passing through the prosthesis and the vessel wall. By superelastically deforming the distal portion during deployment, it is easier to cause the anchor to penetrate the prosthesis and the vessel wall. Further, by having the anchor return to its relaxed state after passing through the prosthesis and vessel wall, better clamping of the prosthesis to the vessel wall is achieved.Type: ApplicationFiled: April 6, 2017Publication date: October 11, 2018Inventor: Travis Rowe
-
Publication number: 20170156863Abstract: A venous valve prosthesis includes a frame and a prosthetic valve coupled to the frame. With the venous valve prosthesis implanted in a vein, the prosthetic valve includes a closed configuration wherein an outer surface of the prosthetic valve is in contact with a wall of the vein around a circumference of the prosthetic valve to prevent blood from flowing past the prosthetic valve between the wall of the vein and the outer surface of the prosthetic valve. The prosthetic valve is configured to move to an open configuration such that at least a portion of an outer wall of the prosthetic valve partially collapses away from the wall of the vein in response to antegrade blood flow through the vein to enable blood flow between the outer surface of the prosthetic valve and the wall of the vein.Type: ApplicationFiled: December 3, 2015Publication date: June 8, 2017Inventors: Jeffery Argentine, Todd Malsbary, Keith Perkins, Travis Rowe
-
Patent number: 8998975Abstract: A helical stent includes a central segment having a first tubular waveform and a first end segment having a second tubular waveform. The waveforms are defined by a plurality of struts and a plurality of crowns connecting adjacent struts together. The struts of the second tubular waveform have different lengths such that second tubular waveform includes a plurality of amplitudes. The second tubular waveform comprises a complete turn around a longitudinal axis of the stent. A first connector connects together the first tubular waveform first end, the second tubular waveform first end, and the second tubular waveform second end. Due to the configuration of the second tubular waveform of the first end segment, the stent end at the first end segment is substantially orthogonal to the longitudinal axis of the stent. A second end segment similar to the first end segment can be connected to a second end of the first tubular waveform.Type: GrantFiled: November 12, 2012Date of Patent: April 7, 2015Assignee: Medtronic Vascular, Inc.Inventor: Travis Rowe
-
Publication number: 20140135904Abstract: A helical stent includes a central segment having a first tubular waveform and a first end segment having a second tubular waveform. The waveforms are defined by a plurality of struts and a plurality of crowns connecting adjacent struts together. The struts of the second tubular waveform have different lengths such that second tubular waveform includes a plurality of amplitudes. The second tubular waveform comprises a complete turn around a longitudinal axis of the stent. A first connector connects together the first tubular waveform first end, the second tubular waveform first end, and the second tubular waveform second end. Due to the configuration of the second tubular waveform of the first end segment, the stent end at the first end segment is substantially orthogonal to the longitudinal axis of the stent. A second end segment similar to the first end segment can be connected to a second end of the first tubular waveform.Type: ApplicationFiled: November 12, 2012Publication date: May 15, 2014Applicant: MEDTRONIC VASCULAR, INC.Inventor: Travis Rowe
-
Patent number: 8632579Abstract: Systems for delivering a bifurcated stent to a bifurcation site include catheters and/or bifurcated systems delivered therefrom. A catheter includes a balloon with a bulge region that allows a portion of the stent to be expanded.Type: GrantFiled: September 15, 2010Date of Patent: January 21, 2014Assignee: Boston Scientific Scimed, Inc.Inventors: Gregory G. Brucker, Enrique Malaret, Todd Hall, David Byrd, Gerald Hubbs, Gregory Furnish, Josh Barber, Indaka Gunasekara, Benjamin Morris, Valerie Futral Maron, Sava A. Chernomordik, William C. Mers Kelly, William A. Reuss, Jr., Simon Furnish, Michael W. Wilson, Hacene Bouadi, John C. Muskivitch, Matthew L. Pease, David A. Rahdert, Travis Rowe, Gregory M. Ruhf, Brandon G. Walsh, Claude A. Vidal, Thomas Banks, Russ J. Redmond
-
Publication number: 20110270339Abstract: Systems and methods of delivering and retaining a leadless medical implant to tissue, wherein a docking base and the implant are sequentially delivered to an implantation site. In a first stage, the docking base is delivered and deployed into tissue at an implantation site. In a second stage, the implant is navigated through the vasculature and coupled to the docking base. Various mechanisms for navigating the implant to the previously implanted docking base and coupling the implant thereto are described. Navigational mechanisms include advancing the implant over a proximally extending wire portion that is releasably attached to the previously implanted docking base, utilizing fluoroscopic visualization to guide the implant to a previously implanted docking base that is at least partially radiopaque and utilizing electromagnetism to guide the implant to a previously implanted docking base that is electro-magnetizable.Type: ApplicationFiled: April 30, 2010Publication date: November 3, 2011Applicant: Medtronic Vascular, Inc.Inventors: Robert Murray, III, Gianfranco Pellegrini, Susan Rea Peterson, Travis Rowe, Erik Griswold, Scott Doig, John Kantor
-
Publication number: 20110270340Abstract: Systems and methods of delivering and retaining a leadless medical implant to tissue, wherein a docking base and the implant are sequentially delivered to an implantation site. In a first stage, the docking base is delivered and deployed into tissue at an implantation site. In a second stage, the implant is navigated through the vasculature and coupled to the docking base. Various mechanisms for navigating the implant to the previously implanted docking base and coupling the implant thereto are described. Navigational mechanisms include advancing the implant over a proximally extending wire portion that is releasably attached to the previously implanted docking base, utilizing fluoroscopic visualization to guide the implant to a previously implanted docking base that is at least partially radiopaque and utilizing electromagnetism to guide the implant to a previously implanted docking base that is electro-magnetizable.Type: ApplicationFiled: April 30, 2010Publication date: November 3, 2011Applicant: Medtronic Vascular,Inc.Inventors: Gianfranco Pellegrini, Susan Rea Peterson, Travis Rowe, Arvind Srinivas, Scott Doig, Barry Wohl
-
Publication number: 20110004287Abstract: Systems for delivering a bifurcated stent to a bifurcation site comprise catheters and/or bifurcated stents delivered therefrom.Type: ApplicationFiled: September 15, 2010Publication date: January 6, 2011Applicant: BOSTON SCIENTIFIC SCIMED, INC.Inventors: Gregory G. Brucker, Enrique Malaret, Todd Hall, David Byrd, Gerald Hubbs, Gregory Furnish, Josh Barber, Indaka Gunasekara, Benjamin Morris, Valerie Futral, Sava A. Chernomordik, William C. Mers Kelly, William A. Reuss, JR., Simon Furnish, Michael W. Wilson, Hacene Bouadi, John C. Muskivitch, Matthew L. Pease, David A. Rahdert, Travis Rowe, Gregory M. Ruhf, Brandon G. Walsh, Claude A. Vidal, Thomas Banks, Russ J. Redmond
-
Patent number: 7799064Abstract: Systems for delivering a bifurcated stent to a bifurcation site comprise catheters and/or bifurcated stents delivered therefrom.Type: GrantFiled: February 26, 2002Date of Patent: September 21, 2010Assignee: Boston Scientific Scimed, Inc.Inventors: Gregory G. Brucker, Enrique Malaret, Todd Hall, David Byrd, Gerald Hubbs, Gregory Furnish, Josh Barber, Indaka Gunasekara, Benjamin Morris, Valerie Futral, Sava A. Chernomordik, William C. Mers Kelly, William A. Reuss, Jr., Simon Furnish, Michael W. Wilson, Hacene Bouadi, John C. Muskivitch, Matthew L. Pease, David A. Rahdert, Travis Rowe, Gregory M. Ruhf, Brandon G. Walsh, Claude A. Vidal, Thomas Banks, Russ J. Redmond
-
Patent number: 7758634Abstract: A bifurcated stent includes a first stent section and a second stent section. The first stent section is balloon expandable, has an unexpanded configuration, an expanded configuration, and a tubular wall defining a secondary opening. The secondary stent section is self-expanding and an end of the secondary stent section is engaged to a portion of the tubular wall of the primary stent section defining the secondary opening. The secondary stent section has an unexpanded configuration with a first length and an expanded configuration with a second length where the first length is less than the second length. The secondary stent section is expanded to the expanded configuration after the primary stent section is expanded to the expanded configuration. The secondary stent section forms a portion of the tubular wall of the primary stent section in the unexpanded configuration.Type: GrantFiled: March 21, 2007Date of Patent: July 20, 2010Assignee: Boston Scientific Scimed, Inc.Inventors: Gregory G. Brucker, Enrique Malaret, Todd Hall, David Byrd, Gerald Hubbs, Gregory Furnish, Josh Barber, Indaka Gunasekara, Benjamin Morris, Valerie Futral, Sava A. Chernomordik, William C. Mers Kelly, William A. Reuss, Simon Furnish, Michael A. Wilson, Hacene Bouadi, John C. Muskivitch, Matthew L. Pease, David A. Rahdert, Travis Rowe, Gregory M. Ruhf, Brandon G. Walsh, Thomas Banks, Russ Redmond, Claude Vidal
-
Publication number: 20070168020Abstract: A bifurcated stent includes a first stent section and a second stent section. The first stent section is balloon expandable, has an unexpanded configuration, an expanded configuration, and a tubular wall defining a secondary opening. The secondary stent section is self-expanding and an end of the secondary stent section is engaged to a portion of the tubular wall of the primary stent section defining the secondary opening. The secondary stent section has an unexpanded configuration with a first length and an expanded configuration with a second length where the first length is less than the second length. The secondary stent section is expanded to the expanded configuration after the primary stent section is expanded to the expanded configuration. The secondary stent section forms a portion of the tubular wall of the primary stent section in the unexpanded configuration.Type: ApplicationFiled: March 21, 2007Publication date: July 19, 2007Inventors: Gregory Brucker, Enrique Malaret, Todd Hall, David Byrd, Gerald Hubbs, Gregory Furnish, Josh Barber, Indaka Gunasekara, Benjamin Morris, Valerie Futral, Sava Chernomordik, William Mers Kelly, William Reuss, Simon Furnish, Michael Wilson, Hacene Bouadi, John Muskivitch, Matthew Pease, David Rahdert, Travis Rowe, Gregory Ruhf, Brandon Walsh, Claude Vidal, Thomas Banks, Russ Redmond
-
Publication number: 20050119731Abstract: Systems for delivering a bifurcated stent to a bifurcation site comprise catheters and/or bifurcated stents delivered therefrom.Type: ApplicationFiled: January 3, 2005Publication date: June 2, 2005Inventors: Gregory Brucker, Enrique Malaret, Todd Hall, David Byrd, Gerald Hubbs, Gregory Furnish, Josh Barber, Indaka Gunasekara, Benjamin Morris, Valerie Futral, Sava Chernomordik, William MersKelly, William Reuss, Simon Furnish, Michael Wilson, Hacene Bouadi, John Muskivitch, Mathew Pease, David Rahdert, Travis Rowe, Gregory Ruhf, Brandon Walsh, Thomas Banks, Russ Redmonds, Claude Vidal
-
Patent number: 6695877Abstract: A bifurcated stent comprises a first stent section and a second stent section. Each stent section is expandable from a predeployed state to a deployed state independently from one another. The second stent section having an end engaged to a receiving region of the first stent section. In the deployed state the first stent section defines a primary flow path and the second stent section defines a secondary flow path in fluid communication with the first flow path. At least a portion of one or both the first stent section and second stent section is constructed from a wire member.Type: GrantFiled: February 26, 2002Date of Patent: February 24, 2004Assignee: SciMed Life SystemsInventors: Gregory G. Brucker, Todd Hall, Enrique Malaret, David Byrd, Gerald Hubbs, Gregory Furnish, Josh Barber, Indaka Gunasekara, Benjamin Morris, Valerie Futral, Sava A. Chernomordik, William C. Mers Kelly, William A. Reuss, Jr., Simon Furnish, Michael W. Wilson, Hacene Bouadi, John C. Muskivitch, Matthew L. Pease, David A. Rahdert, Travis Rowe, Gregory M. Ruhf, Brandon G. Walsh, Claude Vidal, Thomas Banks, Russ Redmond
-
Publication number: 20040024463Abstract: Expandable implants for repair of a defect in an intervertebral disc or in a cancellous bone fracture, and methods and apparatuses for delivering the same into the defect. The implants [generally comprise a compressed form having a size adapted for insertion into the defect, and a composition that allows the implant to expand from the compressed form into an expanded form after the implant is inserted into the defect. The expanded form of the implant has a configuration that fills the defect. The composition used to make the implant can include a shape memory alloy (SMA), Elasthane™ polyetherurethane, or any other suitable material. Further, multiple implants can be used to repair a single defect. The implants can be inserted into the defect by various types of insertion devices, including a needle that provides for percutaneous delivery.Type: ApplicationFiled: April 18, 2003Publication date: February 5, 2004Inventors: James C. Thomas, David C. Forster, Gregory M. Mast, Travis Rowe