Patents by Inventor Trent Huang

Trent Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12361306
    Abstract: A T-joint connector can be useful for connecting one or more flex circuit boards to quantum hardware including one or more qubits. The T-joint connector can include one or more flex circuit boards. Each of the one or more flex circuit boards can include one or more signal lines and one or more spring interconnects including a superconducting material. The one or more spring interconnects can be coupled to the one or more signal lines. The one or more spring interconnects can be configured to couple the one or more signal lines to one or more signal pads disposed on a mounting circuit board associated with the quantum hardware. The superconducting material can be superconducting at a temperature less than about 3 kelvin.
    Type: Grant
    Filed: September 16, 2021
    Date of Patent: July 15, 2025
    Assignee: GOOGLE LLC
    Inventors: John Martinis, Bob Benjamin Buckley, Xiaojun Trent Huang
  • Patent number: 12353953
    Abstract: A laminated circuit assembly for filtering signals in one or more signal lines in, for instance, a quantum computing system is provided. In one example, the laminated circuit assembly includes one or more signal lines disposed within a substrate in a first direction. The laminated circuit assembly includes a dielectric portion of the substrate. The laminated circuit assembly includes a filter portion of the substrate extending in a first direction and containing a frequency absorbent material providing less attenuation to a first signal of a first frequency than to a second signal of a second, higher frequency. The filter portion is configured to attenuate infrared signals passing through the one or more signal lines.
    Type: Grant
    Filed: September 16, 2021
    Date of Patent: July 8, 2025
    Assignee: GOOGLE LLC
    Inventors: John Martinis, Bob Benjamin Buckley, Xiaojun Trent Huang
  • Patent number: 12321822
    Abstract: A quantum computing system can include one or more classical processors. The quantum computing system can include quantum hardware including one or more qubits. The quantum computing system can include a chamber mount configured to support the quantum hardware. The quantum computing system can include a vacuum chamber configured to receive the chamber mount and dispose the quantum hardware in a vacuum. The vacuum chamber can form a cooling gradient from an end of the vacuum chamber to the quantum hardware. The quantum computing system can include a plurality of flex circuit boards including one or more signal lines. Each of the plurality of flex circuit boards can be configured to transmit signals by the one or more signal lines through the vacuum chamber to couple the one or more classical processors to the quantum hardware.
    Type: Grant
    Filed: September 16, 2021
    Date of Patent: June 3, 2025
    Assignee: GOOGLE LLC
    Inventors: John Martinis, Bob Benjamin Buckley, Xiaojun Trent Huang
  • Publication number: 20250110328
    Abstract: A dual axis MEMS mirror assembly is disclosed. The assembly has a mirror and two arms, each having a rotational degree of motion and a translational degree of freedom. Each arm is hingedly attached to opposite ends of the mirror. A first pair of actuators is coupled to opposite ends of the first arm. A second pair of actuators is coupled to opposite ends of the second arm. The mirror is rotated around a first axis by the first and second arms when the first and second pair of actuators are rotated in the same angular direction causing the arms to translate in the translational degree of freedom. The mirror is rotated around a second axis by the first and second arms when the first and second pair of actuators are rotated in the opposite angular direction causing the arms to move in the rotational degree of motion.
    Type: Application
    Filed: September 28, 2023
    Publication date: April 3, 2025
    Inventors: Trent Huang, Jia Li, Curtis Ray, Jianing Zhao
  • Patent number: 12207407
    Abstract: An interconnection for flex circuit boards used, for instance, in a quantum computing system are provided. In one example, the interconnection can include a first flex circuit board having a first side and a second side opposite the first side. The interconnection can include a second flex circuit board having a third side and a fourth side opposite the third side. The first flex circuit board and the second flex circuit board are physically coupled together in an overlap joint in which a portion of the second side for the first flex circuit board overlaps a portion of the third side of the flex circuit board. The interconnection can include a signal pad structure positioned in the overlap joint that electrically couples a first via in the first flex circuit board and a second via in the second flex circuit board.
    Type: Grant
    Filed: July 19, 2023
    Date of Patent: January 21, 2025
    Assignee: GOOGLE LLC
    Inventors: John Martinis, Bob Benjamin Buckley, Xiaojun Trent Huang
  • Publication number: 20240327200
    Abstract: A system and method for precisely positioning a moveable structure in a micro-electromechanical system (MEMS). The system includes a substrate and a moveable device structure supported on the substrate. The device structure is moveable from an initial position to a deployment position at a predetermined offset angle to the substrate. A moveable anchor structure is supported on the substrate in proximity to the device structure. The anchor structure is locked to the device structure when the device structure is moved to the deployment position.
    Type: Application
    Filed: June 2, 2023
    Publication date: October 3, 2024
    Inventor: Trent Huang
  • Publication number: 20240327206
    Abstract: A system and method for fabricating a micro-electromechanical system (MEMS) device is disclosed. A device layer, a handle layer and a buried oxide layer between the handle layer and the device wafer are formed. A top trench is created in a top surface of the device layer. An oxide layer is created over the top surface of the device layer and the top trench. The top of the device layer and the top trench is coated with a polysilicon layer. The oxide layer of the top trench or the top of the device layer is selectively etched away to create a structure. A bottom trench is created through the handle layer under the structure.
    Type: Application
    Filed: January 10, 2024
    Publication date: October 3, 2024
    Inventor: Trent Huang
  • Patent number: 12082335
    Abstract: A flex circuit board can be used in transmitting signals in a quantum computing system. The flex circuit board can include at least one dielectric layer and at least one superconducting layer disposed on a surface of the at least one dielectric layer. The at least one superconducting layer can include a superconducting material. The superconducting material can be superconducting at a temperature less than about 3 kelvin. The flex circuit board can have at least one metal structure electroplated onto the at least one superconducting layer.
    Type: Grant
    Filed: September 16, 2021
    Date of Patent: September 3, 2024
    Assignee: GOOGLE LLC
    Inventors: John Martinis, Xiaojun Trent Huang, Bob Benjamin Buckley
  • Patent number: 11923628
    Abstract: Interconnections for connecting flex circuit boards in classical and/or quantum computing systems can include a first flex circuit board having a removed portion that exposes one or more signal lines and a second flex circuit board having a removed portion that exposes one or more other signal lines. The flex circuit boards can be aligned at the removed portions to form a signal trace gap near the exposed signal lines. Exposed signal lines of the first flex circuit board can be coupled with exposed signal lines of the second flex circuit board. A ground support layer can be coupled to the first flex circuit board and the second flex circuit board along the same side. An isolation plate at least partially covering the signal trace gap can be coupled to the first flex circuit board and/or the second flex circuit board on a side opposite of the ground support layer.
    Type: Grant
    Filed: September 16, 2021
    Date of Patent: March 5, 2024
    Assignee: GOOGLE LLC
    Inventors: John Martinis, Bob Benjamin Buckley, Xiaojun Trent Huang
  • Publication number: 20240049392
    Abstract: An interconnection for flex circuit boards used, for instance, in a quantum computing system are provided. In one example, the interconnection can include a first flex circuit board having a first side and a second side opposite the first side. The interconnection can include a second flex circuit board having a third side and a fourth side opposite the third side. The first flex circuit board and the second flex circuit board are physically coupled together in an overlap joint in which a portion of the second side for the first flex circuit board overlaps a portion of the third side of the flex circuit board. The interconnection can include a signal pad structure positioned in the overlap joint that electrically couples a first via in the first flex circuit board and a second via in the second flex circuit board.
    Type: Application
    Filed: July 19, 2023
    Publication date: February 8, 2024
    Inventors: John Martinis, Bob Benjamin Buckley, Xiaojun Trent Huang
  • Patent number: 11751333
    Abstract: An interconnection for flex circuit boards used, for instance, in a quantum computing system are provided. In one example, the interconnection can include a first flex circuit board having a first side and a second side opposite the first side. The interconnection can include a second flex circuit board having a third side and a fourth side opposite the third side. The first flex circuit board and the second flex circuit board are physically coupled together in an overlap joint in which a portion of the second side for the first flex circuit board overlaps a portion of the third side of the flex circuit board. The interconnection can include a signal pad structure positioned in the overlap joint that electrically couples a first via in the first flex circuit board and a second via in the second flex circuit board.
    Type: Grant
    Filed: September 16, 2021
    Date of Patent: September 5, 2023
    Assignee: GOOGLE LLC
    Inventors: John Martinis, Bob Benjamin Buckley, Xiaojun Trent Huang
  • Publication number: 20220083891
    Abstract: A laminated circuit assembly for filtering signals in one or more signal lines in, for instance, a quantum computing system is provided. In one example, the laminated circuit assembly includes one or more signal lines disposed within a substrate in a first direction. The laminated circuit assembly includes a dielectric portion of the substrate. The laminated circuit assembly includes a filter portion of the substrate extending in a first direction and containing a frequency absorbent material providing less attenuation to a first signal of a first frequency than to a second signal of a second, higher frequency. The filter portion is configured to attenuate infrared signals passing through the one or more signal lines.
    Type: Application
    Filed: September 16, 2021
    Publication date: March 17, 2022
    Inventors: John Martinis, Bob Benjamin Buckley, Xiaojun Trent Huang
  • Publication number: 20220083892
    Abstract: A T-joint connector can be useful for connecting one or more flex circuit boards to quantum hardware including one or more qubits. The T-joint connector can include one or more flex circuit boards. Each of the one or more flex circuit boards can include one or more signal lines and one or more spring interconnects including a superconducting material. The one or more spring interconnects can be coupled to the one or more signal lines. The one or more spring interconnects can be configured to couple the one or more signal lines to one or more signal pads disposed on a mounting circuit board associated with the quantum hardware. The superconducting material can be superconducting at a temperature less than about 3 kelvin.
    Type: Application
    Filed: September 16, 2021
    Publication date: March 17, 2022
    Inventors: John Martinis, Bob Benjamin Buckley, Xiaojun Trent Huang
  • Publication number: 20220085527
    Abstract: Interconnections for connecting flex circuit boards in classical and/or quantum computing systems can include a first flex circuit board having a removed portion that exposes one or more signal lines and a second flex circuit board having a removed portion that exposes one or more other signal lines. The flex circuit boards can be aligned at the removed portions to form a signal trace gap near the exposed signal lines. Exposed signal lines of the first flex circuit board can be coupled with exposed signal lines of the second flex circuit board. A ground support layer can be coupled to the first flex circuit board and the second flex circuit board along the same side. An isolation plate at least partially covering the signal trace gap can be coupled to the first flex circuit board and/or the second flex circuit board on a side opposite of the ground support layer.
    Type: Application
    Filed: September 16, 2021
    Publication date: March 17, 2022
    Inventors: John Martinis, Bob Benjamin Buckley, Xiaojun Trent Huang
  • Publication number: 20220087022
    Abstract: An interconnection for flex circuit boards used, for instance, in a quantum computing system are provided. In one example, the interconnection can include a first flex circuit board having a first side and a second side opposite the first side. The interconnection can include a second flex circuit board having a third side and a fourth side opposite the third side. The first flex circuit board and the second flex circuit board are physically coupled together in an overlap joint in which a portion of the second side for the first flex circuit board overlaps a portion of the third side of the flex circuit board. The interconnection can include a signal pad structure positioned in the overlap joint that electrically couples a first via in the first flex circuit board and a second via in the second flex circuit board.
    Type: Application
    Filed: September 16, 2021
    Publication date: March 17, 2022
    Inventors: John Martinis, Bob Benjamin Buckley, Xiaojun Trent Huang
  • Publication number: 20220087012
    Abstract: A flex circuit board can be used in transmitting signals in a quantum computing system. The flex circuit board can include at least one dielectric layer and at least one superconducting layer disposed on a surface of the at least one dielectric layer. The at least one superconducting layer can include a superconducting material. The superconducting material can be superconducting at a temperature less than about 3 kelvin. The flex circuit board can have at least one metal structure electroplated onto the at least one superconducting layer.
    Type: Application
    Filed: September 16, 2021
    Publication date: March 17, 2022
    Inventors: John Martinis, Xiaojun Trent Huang, Bob Benjamin Buckley
  • Publication number: 20220083893
    Abstract: A quantum computing system can include one or more classical processors. The quantum computing system can include quantum hardware including one or more qubits. The quantum computing system can include a chamber mount configured to support the quantum hardware. The quantum computing system can include a vacuum chamber configured to receive the chamber mount and dispose the quantum hardware in a vacuum. The vacuum chamber can form a cooling gradient from an end of the vacuum chamber to the quantum hardware. The quantum computing system can include a plurality of flex circuit boards including one or more signal lines. Each of the plurality of flex circuit boards can be configured to transmit signals by the one or more signal lines through the vacuum chamber to couple the one or more classical processors to the quantum hardware.
    Type: Application
    Filed: September 16, 2021
    Publication date: March 17, 2022
    Inventors: John Martinis, Bob Benjamin Buckley, Xiaojun Trent Huang
  • Publication number: 20120245445
    Abstract: A body fluid sampling system for use on a tissue site includes a drive force generator and one or more microneedles operatively coupled to the drive force generator. Each of a microneedle has a height of 500 to 2000 ?m and a variable tapering angle of 60 to 90°. A sample chamber is coupled to the one or more microneedles. A body fluid is created when the one or more microneedles pierces a tissue site flows to the sample chamber for glucose detection and analysis.
    Type: Application
    Filed: April 14, 2011
    Publication date: September 27, 2012
    Inventors: Michael Darryl Black, Anita Margarette Chambers, Trent Huang
  • Patent number: 5862003
    Abstract: A microelectromechanical micromotion amplifier generates a controlled lateral motion in response to a small deformation in the axial direction of a MEM beam or body. Lateral motion is produced by buckling of one or more long slender beams, the buckling motion being relatively large with respect to the axial motion which causes such lateral motion. The beams may be designed with a slight asymmetry to achieve gradual buckling in a desired direction. The device is capable of amplifying a driving motion in the range of 1-5 micrometers to produce a transverse motion in the range of 50-200 micrometers.
    Type: Grant
    Filed: June 20, 1996
    Date of Patent: January 19, 1999
    Inventors: Muhammad T. A. Saif, Trent Huang, Noel C. MacDonald
  • Patent number: 5770465
    Abstract: A process is described for manufacturing submicron, ultra-high aspect ratio microstructures using a trench-filling etch masking technique. Deep trenches are etched into a substrate, the trenches are filled with an appropriate trench-filling material, and deep etching into the substrate is carried out with the trench-filling material serving as a mask.
    Type: Grant
    Filed: June 21, 1996
    Date of Patent: June 23, 1998
    Assignee: Cornell Research Foundation, Inc.
    Inventors: Noel C. MacDonald, Xiaojun Trent Huang, Liang-Yuh Chen