Patents by Inventor Trent M. Molter

Trent M. Molter has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11959699
    Abstract: In an aspect, a system comprises a water stream in fluid communication with an electrolyzer; the electrolyzer comprising an anode and a cathode side chamber; a deep space oxygen radiator in fluid communication with the anode side chamber of the electrolyzer; a cryogenic heat exchanger comprising an oxygen storage tank in fluid communication with the deep space oxygen radiator; an electrochemical hydrogen compressor in fluid communication with the cathode side chamber; a hydrogen storage tank in fluid communication with the electrochemical hydrogen compressor via a cooled hydrogen stream; wherein at least a portion of the cooled hydrogen stream is in a first fluid communication with an expansion valve and the cryogenic heat exchanger; wherein the hydrogen storage tank is in a second fluid communication with the electrochemical hydrogen compressor via a warmed hydrogen stream; and wherein the cryogenic heat exchanger is in fluid communication with the warmed hydrogen stream.
    Type: Grant
    Filed: March 1, 2021
    Date of Patent: April 16, 2024
    Assignees: ETA SPACE LLC, SKYRE, INC.
    Inventors: Trent M. Molter, Robert Roy, William Notardonato
  • Patent number: 11649165
    Abstract: In an aspect, an electrochemical hydrogen isotope recycling apparatus for recycling a feedstream comprising a single isotope of hydrogen, comprising: an electrochemical recycling unit, the unit comprising an anode; a cathode; an isotope-treated, cation exchange membrane operatively disposed between the anode and cathode, the isotope-treated, cation exchange membrane having heavy water containing the isotope of hydrogen therein, the unit configured to receive the feedstream containing the single isotope of hydrogen; wherein the single isotope is deuterium or tritium and when the single isotope is deuterium, the heavy water comprises D2O and when the single isotope is tritium, the heavy water is T2O.
    Type: Grant
    Filed: June 24, 2020
    Date of Patent: May 16, 2023
    Assignee: SUSTAINABLE INNOVATIONS, INC.
    Inventors: Daryl Ludlow, Glenn Eisman, Trent M. Molter
  • Publication number: 20230141903
    Abstract: In an embodiment, a method of concentrating a hydrogen isotope, comprises delivering a fluid comprising the hydrogen isotope to be concentrated and an additional gas other than then hydrogen isotope to an anode of an electrochemical cell comprising a hydron exchange membrane comprising hydrons of the hydrogen isotope, and also comprising said anode on a first side of the hydron exchange membrane, a cathode on a second side of the hydron exchange membrane, and an electrical circuit connection between the anode and the cathode; removing a first stream in fluid communication with the cathode, the first stream comprising concentrated hydrogen isotope; and removing a second stream in fluid communication with the anode, comprising the additional gas delivered to the anode depleted of the hydrogen isotope.
    Type: Application
    Filed: January 6, 2023
    Publication date: May 11, 2023
    Inventors: Daryl Ludlow, Gregory P. Hesler, Trent M. Molter
  • Publication number: 20230126907
    Abstract: In an aspect, a bipolar membrane cell comprises a separation layer located in between an anode half-cell and a cathode half-cell; wherein the anode half-cell comprises a proton exchange membrane and an anode; where the proton exchange membrane is located in between the anode and the separation layer; wherein the cathode half-cell comprises an anion exchange membrane and a cathode; wherein the anion exchange membrane is located in between the cathode and the separation layer; and an external circuit connecting the anode and the cathode.
    Type: Application
    Filed: October 5, 2022
    Publication date: April 27, 2023
    Inventors: Praveen Kolla, Trent M. Molter
  • Publication number: 20220339578
    Abstract: In an aspect, a hydrogen separation unit includes an electrochemical cell stack that includes a separator stack located in between an anode side and a cathode side; a mixed gas conduit for receiving a mixed gas stream to the anode side; an anode removal conduit for removing a helium rich stream from the anode side; and a cathode removal conduit for removing a hydrogen rich stream from the cathode side. The separation stack includes a plurality of electrochemical cells, each of which includes a proton exchange membrane located in between an anode and a cathode. The proton exchange membrane can include a cation. The separation stack can be a cascading separation stack.
    Type: Application
    Filed: September 8, 2020
    Publication date: October 27, 2022
    Inventors: Trent M. Molter, Robert Roy
  • Patent number: 11471829
    Abstract: In an embodiment, a method for recovering carbon dioxide comprises introducing a carbon dioxide rich stream to a scrubber comprising a metal hydroxide and allowing the carbon dioxide to react with the metal hydroxide to form a metal carbonate; directing a metal carbonate stream from the scrubber to an electrochemical concentrator and applying a potential to the electrochemical concentrator to form a metal hydroxide stream and a separated carbon dioxide stream; directing the metal hydroxide stream comprising a recovered metal hydroxide and hydrogen to an electrochemical separator and applying a potential to the electrochemical separator to separate the hydrogen forming a hydrogen recycle stream from the recovered metal hydroxide forming a metal hydroxide recycle stream; and directing the separated carbon dioxide stream to a gas liquid separator and separating the separated carbon dioxide stream into a recycled water stream and a concentrated carbon dioxide stream.
    Type: Grant
    Filed: January 13, 2020
    Date of Patent: October 18, 2022
    Assignee: SKYRE, INC.
    Inventors: Trent M. Molter, Karen Murdoch, Christopher Ellithorpe, Timothy Myles, Robert Roy
  • Patent number: 11422119
    Abstract: In an embodiment, a hydrogen monitoring system comprises a plurality of sensing elements that individually comprise a working electrode, a counter electrode, an insulating layer located in between the working electrode and the counter electrode, a catalyst located on an end of both the working electrode and the counter electrode, an electrolyte located on the end of the sensing elements on both the working electrode and the counter electrode, between the working electrode and the counter electrode, and in contact with the catalyst, and an electrical circuit located on an opposite end of the sensing element that connects the working electrode and the counter electrode.
    Type: Grant
    Filed: September 3, 2020
    Date of Patent: August 23, 2022
    Assignees: SKYRE, INC., UNIVERSITY OF CONNECTICUT
    Inventors: Trent M. Molter, Ugur Pasaogullari, Leonard J. Bonville, Charles Banas, Gregory Hesler
  • Patent number: 11353222
    Abstract: Disclosed herein is an air-water extraction system that includes a water selective membrane configured to transport water from humid air via selective diffusion through the water selective membrane; a low pressure chamber in fluid communication with the water selective membrane and a hydrogen gas inlet configured to deliver a dry hydrogen to the low pressure gas chamber, a membrane and electrode assembly comprising an anode, a proton exchange membrane, a cathode, and a power supply; wherein the anode is in fluid communication with the low pressure chamber, a high pressure chamber in fluid communication with the cathode for receiving a saturated hydrogen and a liquid water from the cathode; a water conduit in fluid communication with the high pressure chamber configured to remove the liquid water from the high pressure chamber, and a hydrogen conduit for removing the saturated hydrogen from the high pressure chamber.
    Type: Grant
    Filed: September 24, 2018
    Date of Patent: June 7, 2022
    Assignee: SKYRE, INC.
    Inventors: Trent M. Molter, Joshua S. Preston
  • Publication number: 20220136117
    Abstract: In an aspect a method of recovering hydrogen, the method comprises reacting a hydrocarbon to form a carbon compound and hydrogen in the presence of a catalyst, wherein the carbon compound comprises at least one of carbon dioxide or carbon monoxide; separating the carbon compound from the hydrogen; directing the carbon compound to a cathode side of an electrochemical cell and directing water to an anode side of the electrochemical cell; electrolyzing the water on the anode side to form oxygen and protons; applying a voltage to a membrane and electrode assembly in the electrochemical cell to cause the protons to traverse through a proton exchange membrane from an anode to a cathode on the cathode side; and reacting the protons with the carbon compound to form an organic product.
    Type: Application
    Filed: February 18, 2020
    Publication date: May 5, 2022
    Inventors: Trent M. Molter, Robert Roy
  • Patent number: 11211616
    Abstract: A method of manufacturing electrochemical cell stacks of different sizes or configurations is disclosed in which a first planar module having a first planar size and configuration is assembled from a first inventory of parts including planar modular parts having mating surfaces along connectable ends. The planar modular parts are connected in a co-planar configuration to form the first planar module having the first size and configuration. A second inventory of parts including planar modular parts in common with the first inventory is identified, and a second planar module having a different planar size or configuration than the first planar module is assembled from the second inventory. The first and second planar modules are assembled with other planar modules and component to form electrochemical stacks corresponding to the planar size and configuration of the respective first or second planar module.
    Type: Grant
    Filed: August 31, 2016
    Date of Patent: December 28, 2021
    Assignee: SUSTAINABLE INNOVATIONS, INC.
    Inventors: Mark E. Dristy, Trent M. Molter, William A. G. McPhee, Joshua S. Preston, Gregory Hesler
  • Publication number: 20210270522
    Abstract: In an aspect, a system comprises a water stream in fluid communication with an electrolyzer; the electrolyzer comprising an anode and a cathode side chamber; a deep space oxygen radiator in fluid communication with the anode side chamber of the electrolyzer; a cryogenic heat exchanger comprising an oxygen storage tank in fluid communication with the deep space oxygen radiator; an electrochemical hydrogen compressor in fluid communication with the cathode side chamber; a hydrogen storage tank in fluid communication with the electrochemical hydrogen compressor via a cooled hydrogen stream; wherein at least a portion of the cooled hydrogen stream is in a first fluid communication with an expansion valve and the cryogenic heat exchanger; wherein the hydrogen storage tank is in a second fluid communication with the electrochemical hydrogen compressor via a warmed hydrogen stream; and wherein the cryogenic heat exchanger is in fluid communication with the warmed hydrogen stream.
    Type: Application
    Filed: March 1, 2021
    Publication date: September 2, 2021
    Inventors: Trent M. Molter, Robert Roy, William Notardonato
  • Publication number: 20200400630
    Abstract: In an embodiment, a hydrogen monitoring system comprises a plurality of sensing elements that individually comprise a working electrode, a counter electrode, an insulating layer located in between the working electrode and the counter electrode, a catalyst located on an end of both the working electrode and the counter electrode, an electrolyte located on the end of the sensing elements on both the working electrode and the counter electrode, between the working electrode and the counter electrode, and in contact with the catalyst, and an electrical circuit located on an opposite end of the sensing element that connects the working electrode and the counter electrode.
    Type: Application
    Filed: September 3, 2020
    Publication date: December 24, 2020
    Inventors: Trent M. Molter, Ugur Pasaogullari, Leonard J. Bonville, Charles Banas, Gregory Hesler
  • Patent number: 10830744
    Abstract: In an embodiment, a hydrogen monitoring system comprises a plurality of sensing elements that individually comprise a working electrode, a counter electrode, an insulating layer located in between the working electrode and the counter electrode, a catalyst located on an end of both the working electrode and the counter electrode, an electrolyte located on the end of the sensing elements on both the working electrode and the counter electrode, between the working electrode and the counter electrode, and in contact with the catalyst, and an electrical circuit located on an opposite end of the sensing element that connects the working electrode and the counter electrode.
    Type: Grant
    Filed: June 5, 2018
    Date of Patent: November 10, 2020
    Assignees: SKYRE, INC., UNIVERSITY OF CONNECTICUT
    Inventors: Trent M. Molter, Ugur Pasaogullari, Leonard J. Bonville, Charles Banas, Gregory Hesler
  • Publication number: 20200346927
    Abstract: In an aspect, an electrochemical hydrogen isotope recycling apparatus for recycling a feedstream comprising a single isotope of hydrogen, comprising: an electrochemical recycling unit, the unit comprising an anode; a cathode; an isotope-treated, cation exchange membrane operatively disposed between the anode and cathode, the isotope-treated, cation exchange membrane having heavy water containing the isotope of hydrogen therein, the unit configured to receive the feedstream containing the single isotope of hydrogen; wherein the single isotope is deuterium or tritium and when the single isotope is deuterium, the heavy water comprises D2O and when the single isotope is tritium, the heavy water is T2O.
    Type: Application
    Filed: June 24, 2020
    Publication date: November 5, 2020
    Inventors: Daryl Ludlow, Glenn Eisman, Trent M. Molter
  • Publication number: 20200284448
    Abstract: In an embodiment, an air-water extraction system comprises a water selective membrane configured to transport water from humid air via selective diffusion through the water selective membrane; a low pressure chamber in fluid communication with the water selective membrane and a hydrogen gas inlet configured to deliver a dry hydrogen to the low pressure gas chamber, a membrane and electrode assembly comprising an anode, a proton exchange membrane, a cathode, and a power supply; wherein the anode is in fluid communication with the low pressure chamber, a high pressure chamber in fluid communication with the cathode for receiving a saturated hydrogen and a liquid water from the cathode; a water conduit in fluid communication with the high pressure chamber configured to remove the liquid water from the high pressure chamber, and a hydrogen conduit for removing the saturated hydrogen from the high pressure chamber.
    Type: Application
    Filed: September 24, 2018
    Publication date: September 10, 2020
    Inventors: Trent M. Molter, Joshua S. Preston
  • Publication number: 20200222852
    Abstract: In an embodiment, a method for recovering carbon dioxide comprises introducing a carbon dioxide rich stream to a scrubber comprising a metal hydroxide and allowing the carbon dioxide to react with the metal hydroxide to form a metal carbonate; directing a metal carbonate stream from the scrubber to an electrochemical concentrator and applying a potential to the electrochemical concentrator to form a metal hydroxide stream and a separated carbon dioxide stream; directing the metal hydroxide stream comprising a recovered metal hydroxide and hydrogen to an electrochemical separator and applying a potential to the electrochemical separator to separate the hydrogen forming a hydrogen recycle stream from the recovered metal hydroxide forming a metal hydroxide recycle stream; and directing the separated carbon dioxide stream to a gas liquid separator and separating the separated carbon dioxide stream into a recycled water stream and a concentrated carbon dioxide stream.
    Type: Application
    Filed: January 13, 2020
    Publication date: July 16, 2020
    Inventors: Trent M. Molter, Karen Murdoch, Christopher Ellithorpe, Timothy Myles, Robert Roy
  • Publication number: 20190336911
    Abstract: In an embodiment, a method of concentrating a hydrogen isotope, comprises delivering a fluid comprising the hydrogen isotope to be concentrated and an additional gas other than then hydrogen isotope to an anode of an electrochemical cell comprising a hydron exchange membrane comprising hydrons of the hydrogen isotope, and also comprising said anode on a first side of the hydron exchange membrane, a cathode on a second side of the hydron exchange membrane, and an electrical circuit connection between the anode and the cathode; removing a first stream in fluid communication with the cathode, the first stream comprising concentrated hydrogen isotope; and removing a second stream in fluid communication with the anode, comprising the additional gas delivered to the anode depleted of the hydrogen isotope.
    Type: Application
    Filed: July 10, 2019
    Publication date: November 7, 2019
    Inventors: Daryl Ludlow, Gregory P. Hesler, Trent M. Molter
  • Publication number: 20180372701
    Abstract: In an embodiment, a hydrogen monitoring system comprises a plurality of sensing elements that individually comprise a working electrode, a counter electrode, an insulating layer located in between the working electrode and the counter electrode, a catalyst located on an end of both the working electrode and the counter electrode, an electrolyte located on the end of the sensing elements on both the working electrode and the counter electrode, between the working electrode and the counter electrode, and in contact with the catalyst, and an electrical circuit located on an opposite end of the sensing element that connects the working electrode and the counter electrode.
    Type: Application
    Filed: June 5, 2018
    Publication date: December 27, 2018
    Inventors: Trent M. Molter, Ugur Pasaogullari, Leonard J. Bonville, Charles Banas, Gregory Hesler
  • Publication number: 20180342742
    Abstract: A method of manufacturing electrochemical cell stacks of different sizes or configurations is disclosed in which a first planar module having a first planar size and configuration is assembled from a first inventory of parts including planar modular parts having mating surfaces along connectable ends. The planar modular parts are connected in a co-planar configuration to form the first planar module having the first size and configuration. A second inventory of parts including planar modular parts in common with the first inventory is identified, and a second planar module having a different planar size or configuration than the first planar module is assembled from the second inventory. The first and second planar modules are assembled with other planar modules and component to form electrochemical stacks corresponding to the planar size and configuration of the respective first or second planar module.
    Type: Application
    Filed: August 31, 2016
    Publication date: November 29, 2018
    Inventors: Mark E. Dristy, Trent M. Molter, William A. G. McPhee, Joshua S. Preston, Gregory Hesler
  • Publication number: 20180071678
    Abstract: An electrochemical hydrogen isotope concentrating apparatus is disclosed. The apparatus includes an inlet stream of the hydrogen isotope to be concentrated. The apparatus also includes an electrochemical cell that includes a hydron exchange membrane containing hydrons of the hydrogen isotope, an anode on a first side of the hydron exchange membrane in fluid communication with the inlet stream, a cathode on a second side of the hydron exchange membrane, and an electrical circuit connection between the anode and the cathode. The apparatus further includes two outlet streams: a first outlet stream of the hydrogen isotope in fluid communication with the cathode, and a second outlet stream depleted of the hydrogen isotope in fluid communication with the anode.
    Type: Application
    Filed: September 11, 2017
    Publication date: March 15, 2018
    Inventors: Daryl Ludlow, Greg Hesler, Trent M. Molter