Patents by Inventor Trent Newswander

Trent Newswander has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9366853
    Abstract: An opto-mechanical deployable telescope includes a hub, at least one deployable multiple petal primary mirror mounted to the hub, a deployment assembly, a secondary optic assembly, and a deployment engine assembly. The deployment assembly is operable to move the at least one primary mirror between a stowed position and a deployed position. The deployment engine assembly is operable to power the deployment assembly using stored mechanical energy. The deployment assembly includes a kinematic or semi-kinematic interface between the hub and the at least one primary mirror to hold petals of the at least one primary mirror in alignment relative to each other in the deployed position. The secondary optic assembly comprising a secondary optical member and is operable to axially position the secondary optical member relative to the primary mirror.
    Type: Grant
    Filed: February 2, 2015
    Date of Patent: June 14, 2016
    Assignee: Utah State University Research Foundation
    Inventors: Trent Newswander, Blake Crowther, James Champagne, Kendall B. Johnson
  • Publication number: 20150146288
    Abstract: An opto-mechanical deployable telescope includes a hub, at least one deployable multiple petal primary mirror mounted to the hub, a deployment assembly, a secondary optic assembly, and a deployment engine assembly. The deployment assembly is operable to move the at least one primary mirror between a stowed position and a deployed position. The deployment engine assembly is operable to power the deployment assembly using stored mechanical energy. The deployment assembly includes a kinematic or semi-kinematic interface between the hub and the at least one primary mirror to hold petals of the at least one primary mirror in alignment relative to each other in the deployed position. The secondary optic assembly comprising a secondary optical member and is operable to axially position the secondary optical member relative to the primary mirror.
    Type: Application
    Filed: February 2, 2015
    Publication date: May 28, 2015
    Applicant: UTAH STATE UNIVERSITY RESEARCH FOUNDATION
    Inventors: Trent Newswander, Blake Crowther, James Champagne, Kendall B. Johnson
  • Patent number: 8947777
    Abstract: An opto-mechanical deployable telescope includes a hub, at least one deployable multiple petal primary mirror mounted to the hub, a deployment assembly, and a deployment engine assembly. The deployment assembly is operable to move the at least one primary mirror between a stowed position and a deployed position. The deployment engine assembly is operable to power the deployment assembly using stored mechanical energy. The deployment assembly includes a kinematic or semi-kinematic interface between the hub and the at least one primary mirror to hold petals of the at least one primary mirror in alignment relative to each other in the deployed position.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: February 3, 2015
    Assignee: Utah State University Research Foundation
    Inventors: Trent Newswander, Blake Crowther, James Champagne, Adam Norris
  • Publication number: 20130229709
    Abstract: An opto-mechanical deployable telescope includes a hub, at least one deployable multiple petal primary mirror mounted to the hub, a deployment assembly, and a deployment engine assembly. The deployment assembly is operable to move the at least one primary mirror between a stowed position and a deployed position. The deployment engine assembly is operable to power the deployment assembly using stored mechanical energy. The deployment assembly includes a kinematic or semi-kinematic interface between the hub and the at least one primary mirror to hold petals of the at least one primary mirror in alignment relative to each other in the deployed position.
    Type: Application
    Filed: February 27, 2012
    Publication date: September 5, 2013
    Applicant: Utah State University Research Foundation
    Inventors: Trent Newswander, Blake Crowther, James Champagne, Adam Norris
  • Patent number: 8292537
    Abstract: A method and system that compensates for thermal induced stresses in structures composed of different materials fastened together. The system utilizes three compensation mounts made from a material with a coefficient of thermal expansion that is between that of the two materials being fastened together. These mounts can be linear or, for a thinner structure, the mounts are “C” shaped. The size of the “C” mounts and fastening locations are calculated based on the coefficient of thermal expansion for the two materials being fastened together and the “C” mount material. The geometry of the “C” mounts allows for fastening the two planar surfaces without introducing a large thickness increase to the structure. This system allows for materials to be fastened together, and when placed in an environment with temperature fluctuations, the system experiences zero, minimal or insignificant amounts of thermal induced stress.
    Type: Grant
    Filed: June 15, 2010
    Date of Patent: October 23, 2012
    Assignee: Utah State University Research Foundation
    Inventor: Trent Newswander
  • Publication number: 20100316437
    Abstract: A method and system that compensates for thermal induced stresses in structures composed of different materials fastened together. The system utilizes three compensation mounts made from a material with a coefficient of thermal expansion that is between that of the two materials being fastened together. These mounts can be linear or, for a thinner structure, the mounts are “C” shaped. The size of the “C” mounts and fastening locations are calculated based on the coefficient of thermal expansion for the two materials being fastened together and the “C” mount material. The geometry of the “C” mounts allows for fastening the two planar surfaces without introducing a large thickness increase to the structure. This system allows for materials to be fastened together, and when placed in an environment with temperature fluctuations, the system experiences zero, minimal or insignificant amounts of thermal induced stress.
    Type: Application
    Filed: June 15, 2010
    Publication date: December 16, 2010
    Applicant: Utah State University Research Foundation
    Inventor: Trent Newswander