Patents by Inventor Trent William Muhlenkamp

Trent William Muhlenkamp has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11958249
    Abstract: A reclamation system for an additive manufacturing apparatus can include a collection structure configured to remove at least a portion of the resin from a foil. A containment vessel can be configured to retain the resin removed from the foil. A drain can direct the resin from the containment vessel to a reservoir.
    Type: Grant
    Filed: June 10, 2022
    Date of Patent: April 16, 2024
    Assignee: General Electric Company
    Inventors: Trent William Muhlenkamp, Christopher David Barnhill, Meredith Elissa Dubelman, Carlos H. Bonilla, Brian Thomas Thompson, John Thomas Sterle
  • Publication number: 20240109250
    Abstract: An additive manufacturing apparatus includes a support configured to support a resin and a constituent material. A support plate includes a window. A stage is configured to hold one or more composite layers of the resin and the constituent material to form a composite component positioned opposite the support plate. A radiant energy device is positioned on an opposite side of the support from the stage and is operable to generate and project radiant energy in a patterned image through the window. An actuator assembly is configured to move the stage in a Z-axis direction and a Y-axis direction.
    Type: Application
    Filed: December 14, 2022
    Publication date: April 4, 2024
    Inventors: Xi Yang, Christopher David Barnhill, Trent William Muhlenkamp, Joseph Edward Hampshire
  • Publication number: 20240100774
    Abstract: An additive manufacturing apparatus includes a feed module and a take-up module that are configured to operably couple with a foil. A stage is configured to hold one or more cured layers of a resin that form a component. A radiant energy device is positioned opposite to the at least one stage. The radiant energy device is operable to generate and project radiant energy in a predetermined pattern. An actuator is configured to change a relative position of the at least one stage and the foil. An accumulator is positioned between the feed module and the take-up module. The accumulator is configured to retain an intermediate portion of the foil to allow a first portion of the foil upstream of the accumulator to move at a first speed and a second portion of the foil downstream of the accumulator to move at a second speed during a defined time period.
    Type: Application
    Filed: November 30, 2023
    Publication date: March 28, 2024
    Inventors: Mary Kathryn Thompson, Meredith Elissa Dubelman, Christopher David Barnhill, Xi Yang, Trent William Muhlenkamp, William Joseph Steele
  • Publication number: 20240059013
    Abstract: An additive manufacturing apparatus includes a support plate defining a window and a resin support configured to support an uncured layer of resin. A stage is configured to hold one or more cured layers of the resin to form a component positioned opposite a support plate. A radiant energy device is positioned on an opposite side of the resin support from the stage and is operable to project radiant energy in a grid through the window. The grid and/or pixels thereof are intelligently shifted to efficiently print one or more layers of a component.
    Type: Application
    Filed: August 9, 2023
    Publication date: February 22, 2024
    Inventors: Mary Kathryn Thompson, Travis Gene Sands, Kevin Robert Dickson, William Joseph Steele, Trent William Muhlenkamp
  • Publication number: 20240059008
    Abstract: An additive manufacturing apparatus includes a stage configured to hold a component. A radiant energy device is operable to generate and project radiant energy in a patterned image. An actuator is configured to change a relative position of the stage relative to the radiant energy device. A resin management system includes a material deposition assembly upstream configured to deposit a resin on a resin support. The material deposition assembly includes a reservoir configured to retain a first volume of the resin and define a thickness of the resin on the resin support as the resin support is translated in an X-axis direction. The material deposition assembly further includes a vessel positioned above the reservoir in a Z-axis direction and configured to store a second volume of the resin. In addition, the material deposition assembly includes a conduit configured to direct the resin from the vessel to the reservoir.
    Type: Application
    Filed: October 30, 2023
    Publication date: February 22, 2024
    Inventors: Meredith Elissa Dubelman, Trent William Muhlenkamp, Kevin Robert Dickson, Christopher David Barnhill, Brian Thomas Thompson
  • Publication number: 20240059011
    Abstract: An additive manufacturing apparatus includes a support plate defining a window and a resin support configured to support an uncured layer of resin. A stage is configured to hold one or more cured layers of the resin to form a component positioned opposite a support plate. A radiant energy device is positioned on an opposite side of the resin support from the stage and is operable to project radiant energy in a grid through the window. The grid and/or pixels thereof are intelligently shifted to efficiently print one or more layers of a component.
    Type: Application
    Filed: August 9, 2023
    Publication date: February 22, 2024
    Inventors: Mary Kathryn Thompson, Travis Gene Sands, Kevin Robert Dickson, William Joseph Steele, Trent William Muhlenkamp
  • Publication number: 20240059022
    Abstract: An additive manufacturing apparatus includes a support plate defining a window and a resin support configured to support an uncured layer of resin. A stage is configured to hold one or more cured layers of the resin to form a component positioned opposite a support plate. A radiant energy device is positioned on an opposite side of the resin support from the stage and is operable to project radiant energy in a grid through the window. The grid and/or pixels thereof are intelligently shifted to efficiently print one or more layers of a component.
    Type: Application
    Filed: August 9, 2023
    Publication date: February 22, 2024
    Inventors: Mary Kathryn Thompson, Travis Gene Sands, Kevin Robert Dickson, William Joseph Steele, Trent William Muhlenkamp
  • Publication number: 20240059023
    Abstract: An additive manufacturing apparatus includes a support plate defining a window and a resin support configured to support an uncured layer of resin. A stage is configured to hold one or more cured layers of the resin to form a component positioned opposite a support plate. A radiant energy device is positioned on an opposite side of the resin support from the stage and is operable to project radiant energy in a grid through the window. The grid and/or pixels thereof are intelligently shifted to efficiently print one or more layers of a component.
    Type: Application
    Filed: August 9, 2023
    Publication date: February 22, 2024
    Inventors: Mary Kathryn Thompson, Travis Gene Sands, Kevin Robert Dickson, William Joseph Steele, Trent William Muhlenkamp
  • Publication number: 20240042701
    Abstract: An additive manufacturing apparatus includes a first print module includes a first stage configured to hold a first component and a first radiant energy device. The resin support is configured to be positioned between the first stage and the first radiant energy device. A second print module includes a second stage configured to hold a second component and a second radiant energy device. The resin support is configured to be positioned between the second stage and the second radiant energy device. A control system is configured to translate the resin support based on a condition of the first print module and the second print module through the first print module and the second print module.
    Type: Application
    Filed: October 11, 2023
    Publication date: February 8, 2024
    Inventors: Christopher David Barnhill, Robert Edgar Estes, William Joseph Steele, Trent William Muhlenkamp, Zhen Liu, John Thomas Sterle, Victor Wayne Fulton
  • Patent number: 11865780
    Abstract: An additive manufacturing apparatus includes a feed module and a take-up module that are configured to operably couple with a foil. A stage is configured to hold one or more cured layers of a resin that form a component. A radiant energy device is positioned opposite to the at least one stage. The radiant energy device is operable to generate and project radiant energy in a predetermined pattern. An actuator is configured to change a relative position of the at least one stage and the foil. An accumulator is positioned between the feed module and the take-up module. The accumulator is configured to retain an intermediate portion of the foil to allow a first portion of the foil upstream of the accumulator to move at a first speed and a second portion of the foil downstream of the accumulator to move at a second speed during a defined time period.
    Type: Grant
    Filed: February 26, 2021
    Date of Patent: January 9, 2024
    Assignee: General Electric Company
    Inventors: Mary Kathryn Thompson, Meredith Elissa Dubelman, Christopher David Barnhill, Xi Yang, Trent William Muhlenkamp, William Joseph Steele
  • Patent number: 11826950
    Abstract: An additive manufacturing apparatus includes a stage configured to hold a component. A radiant energy device is operable to generate and project radiant energy in a patterned image. An actuator is configured to change a relative position of the stage relative to the radiant energy device. A resin management system includes a material deposition assembly upstream configured to deposit a resin on a resin support. The material deposition assembly includes a reservoir configured to retain a first volume of the resin and define a thickness of the resin on the resin support as the resin support is translated in an X-axis direction. The material deposition assembly further includes a vessel positioned above the reservoir in a Z-axis direction and configured to store a second volume of the resin. In addition, the material deposition assembly includes a conduit configured to direct the resin from the vessel to the reservoir.
    Type: Grant
    Filed: July 9, 2021
    Date of Patent: November 28, 2023
    Assignees: General Electric Company, Unison Industries, LLC
    Inventors: Meredith Elissa Dubelman, Trent William Muhlenkamp, Kevin Robert Dickson, Christopher David Barnhill, Brian Thomas Thompson
  • Patent number: 11813799
    Abstract: An additive manufacturing apparatus includes a first print module includes a first stage configured to hold a first component and a first radiant energy device. The resin support is configured to be positioned between the first stage and the first radiant energy device. A second print module includes a second stage configured to hold a second component and a second radiant energy device. The resin support is configured to be positioned between the second stage and the second radiant energy device. A control system is configured to translate the resin support based on a condition of the first print module and the second print module through the first print module and the second print module.
    Type: Grant
    Filed: August 9, 2022
    Date of Patent: November 14, 2023
    Assignee: General Electric Company
    Inventors: Christopher David Barnhill, Robert Edgar Estes, William Joseph Steele, Trent William Muhlenkamp, Zhen Liu, John Thomas Sterle, Victor Wayne Fulton
  • Publication number: 20230330924
    Abstract: An additive manufacturing apparatus includes a support plate and a foil supporting an uncured layer of a resin. A stage is configured to hold a component of one or more cured layers of the resin. One or more actuators is operable to move the stage away from the support plate in a Z-axis direction. A radiant energy device is positioned opposite the stage such that the support plate is positioned between the radiant energy device and the stage. A foil interaction device includes a first pneumatic actuation zone and a second pneumatic actuation zone. Each of the first and second pneumatic actuation zones is configured to apply a force on a surface of the foil. The first and second pneumatic actuation zones are fluidly separable and configured to apply varied pressures relative to one another to the surface of the foil.
    Type: Application
    Filed: June 26, 2023
    Publication date: October 19, 2023
    Inventors: Meredith Elissa Dubelman, Christopher David Barnhill, Xi Yang, Lawrence William Nurre, Trent William Muhlenkamp, Mary Kathryn Thompson
  • Publication number: 20230302728
    Abstract: An additive manufacturing apparatus includes a resin support configured to support a first resin and a second resin. A support plate includes a window. A stage is configured to hold one or more cured layers of the resin to form a component positioned opposite the support plate. A radiant energy device is positioned on an opposite side of the resin support from the stage and is operable to generate and project radiant energy in a patterned image through the window. An actuator assembly is configured to move the stage in a Z-axis direction and in a Y-axis direction.
    Type: Application
    Filed: March 16, 2023
    Publication date: September 28, 2023
    Inventors: Xi Yang, William Joseph Steele, Christopher David Barnhill, Meredith Elissa Dubelman, Trent William Muhlenkamp, Mary Kathryn Thompson
  • Patent number: 11731367
    Abstract: An additive manufacturing apparatus includes a stage configured to hold a component. A radiant energy device is operable to generate and project radiant energy toward the stage. An actuator is configured to change a relative position of the stage relative to the radiant energy device. A feed module is configured to support a feed roll of a resin support upstream of the stage about a feed mandrel. A first control device is operably coupled with the feed mandrel. A take-up module is configured to support a take-up roll of the resin support downstream of the stage about a take-up mandrel. A second control device is operably coupled with the take-up mandrel. A computing system is operably coupled with one or more sensors. The computing system is configured to provide commands to at least one of the first control device or the second control device to respectively rotate the first control device or the second control device to obtain a target tension on the resin support.
    Type: Grant
    Filed: June 23, 2021
    Date of Patent: August 22, 2023
    Assignee: General Electric Company
    Inventors: Zhen Liu, Trent William Muhlenkamp, Christopher David Barnhill
  • Patent number: 11707883
    Abstract: An additive manufacturing apparatus includes a support plate and a foil supporting an uncured layer of a resin. A stage is configured to hold a component of one or more cured layers of the resin. One or more actuators is operable to move the stage away from the support plate in a Z-axis direction. A radiant energy device is positioned opposite the stage such that the support plate is positioned between the radiant energy device and the stage. A foil interaction device includes a first pneumatic actuation zone and a second pneumatic actuation zone. Each of the first and second pneumatic actuation zones is configured to apply a force on a surface of the foil. The first and second pneumatic actuation zones are fluidly separable and configured to apply varied pressures relative to one another to the surface of the foil.
    Type: Grant
    Filed: November 20, 2020
    Date of Patent: July 25, 2023
    Assignee: General Electric Company
    Inventors: Meredith Elissa Dubelman, Christopher David Barnhill, Xi Yang, Lawrence William Nurre, Trent William Muhlenkamp, Mary Kathryn Thompson
  • Publication number: 20230064479
    Abstract: An additive manufacturing apparatus includes a first print module includes a first stage configured to hold a first component and a first radiant energy device. The resin support is configured to be positioned between the first stage and the first radiant energy device. A second print module includes a second stage configured to hold a second component and a second radiant energy device. The resin support is configured to be positioned between the second stage and the second radiant energy device. A control system is configured to translate the resin support based on a condition of the first print module and the second print module through the first print module and the second print module.
    Type: Application
    Filed: August 9, 2022
    Publication date: March 2, 2023
    Inventors: Christopher David Barnhill, Robert Edgar Estes, William Joseph Steele, Trent William Muhlenkamp, Zhen Liu, John Thomas Sterle, Victor Wayne Fulton
  • Publication number: 20230067394
    Abstract: An additive manufacturing apparatus includes a build module. A feed module is configured to support a first portion of a resin support. The first portion of the resin support is supported by a feed mounting panel. A take-up module is configured to support a second portion of the resin support. The second portion of the resin support is supported by a take-up mounting panel and is positioned on an opposing side of the radiant energy device from the feed module. An adjustment assembly is configured to adjust a position of at least one of a feed mandrel within the feed module or a take-up mandrel within the take-up module.
    Type: Application
    Filed: August 24, 2021
    Publication date: March 2, 2023
    Inventors: Christopher David Barnhill, Zhen Liu, Trent William Muhlenkamp
  • Publication number: 20230012168
    Abstract: An additive manufacturing apparatus includes a stage configured to hold a component. A radiant energy device is operable to generate and project radiant energy in a patterned image. An actuator is configured to change a relative position of the stage relative to the radiant energy device. A resin management system includes a material deposition assembly upstream configured to deposit a resin on a resin support. The material deposition assembly includes a reservoir configured to retain a first volume of the resin and define a thickness of the resin on the resin support as the resin support is translated in an X-axis direction. The material deposition assembly further includes a vessel positioned above the reservoir in a Z-axis direction and configured to store a second volume of the resin. In addition, the material deposition assembly includes a conduit configured to direct the resin from the vessel to the reservoir.
    Type: Application
    Filed: July 9, 2021
    Publication date: January 12, 2023
    Inventors: Meredith Elissa Dubelman, Trent William Muhlenkamp, Kevin Robert Dickson, Christopher David Barnhill, Brian Thomas Thompson
  • Publication number: 20220410481
    Abstract: A reclamation system for an additive manufacturing apparatus can include a collection structure configured to remove at least a portion of the resin from a foil. A containment vessel can be configured to retain the resin removed from the foil. A drain can direct the resin from the containment vessel to a reservoir.
    Type: Application
    Filed: June 10, 2022
    Publication date: December 29, 2022
    Inventors: Trent William Muhlenkamp, Christopher David Barnhill, Meredith Elissa Dubelman, Carlos H. Bonilla, Brian Thomas Thompson, John Thomas Sterle