Patents by Inventor Trevor Bugg

Trevor Bugg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220135450
    Abstract: Various techniques are provided in relation to flocculation and/or dewatering of thick fine tailings, with shear conditioning of flocculated tailings material in accordance with a pre-determined shearing parameter, such as the Camp Number. One example method of treating thick fine tailings including dispersing a flocculant into the thick fine tailings to form a flocculating mixture; shearing the flocculating mixture to increase yield stress and produce a flocculated mixture; shear conditioning the flocculated mixture to decrease the yield stress and break down flocs, the shear conditioning being performed in accordance with the pre-determined shearing parameter to produce conditioned flocculated material within a water release zone where release water separates from the conditioned flocculated material. The conditioned flocculated material can then be subjected to dewatering, for example by depositing, thickening or filtering.
    Type: Application
    Filed: January 13, 2022
    Publication date: May 5, 2022
    Inventors: MARVIN WEISS, ANA SANCHEZ, TREVOR BUGG, ADRIAN REVINGTON
  • Patent number: 11267730
    Abstract: Various techniques are provided in relation to flocculation and/or dewatering of thick fine tailings, with shear conditioning of flocculated tailings material in accordance with a pre-determined shearing parameter, such as the Camp Number. One example method of treating thick fine tailings including dispersing a flocculant into the thick fine tailings to form a flocculating mixture; shearing the flocculating mixture to increase yield stress and produce a flocculated mixture; shear conditioning the flocculated mixture to decrease the yield stress and break down flocs, the shear conditioning being performed in accordance with the pre-determined shearing parameter to produce conditioned flocculated material within a water release zone where release water separates from the conditioned flocculated material. The conditioned flocculated material can then be subjected to dewatering, for example by depositing, thickening or filtering.
    Type: Grant
    Filed: October 23, 2019
    Date of Patent: March 8, 2022
    Assignee: Suncor Energy Inc.
    Inventors: Marvin Weiss, Ana Sanchez, Trevor Bugg, Adrian Revington
  • Publication number: 20210102125
    Abstract: Techniques for dewatering thick fine tailings may include flocculant dosing on a clay basis and then subjecting the flocculated tailings to dewatering, for instance by pipelining the flocculated material from flocculant addition to a deposition site. The thick fine tailings can be pre-treated by removing hydrocarbons and shear-thinning prior to flocculant addition.
    Type: Application
    Filed: December 17, 2020
    Publication date: April 8, 2021
    Inventors: Adrian Peter Revington, Ana Cristina Sanchez, Trevor Bugg, Oladipo Omotoso
  • Patent number: 10899969
    Abstract: Techniques for dewatering thick fine tailings may include one or more pre-treatment steps, such as pre-shearing to reduce the yield stress prior to flocculation, hydrocarbon removal below a threshold to improve flocculation and dewatering, flocculant dosing on a clay basis, and providing certain properties of the thick fine tailings related to coarse and fine particle sizes and/or chemistry such as divalent cation content. Various advantages may result from pre-treatments based on thick fine tailings properties, such as reduced flocculant dosage requirements, improved dispersion of flocculant into the thick fine tailings and/or enhanced dewatering, for example. One or more of the pre-treatments may be performed.
    Type: Grant
    Filed: June 21, 2013
    Date of Patent: January 26, 2021
    Assignee: SUNCOR ENERGY INC.
    Inventors: Adrian Revington, Ana Sanchez, Trevor Bugg, Oladipo Omotoso
  • Publication number: 20200157432
    Abstract: A process for dewatering oil sand fine tailings is provided and comprises a dispersion and floc build-up stage comprising in-line addition of a flocculent solution comprising an effective amount of flocculation reagent into a flow of the oil sand fine tailings; a gel stage wherein flocculated oil sand fine tailings is transported in-line and subjected to shear conditioning; a floc breakdown and water release stage wherein the flocculated oil sand fine tailings releases water and decreases in yield shear stress, while avoiding an oversheared zone; depositing the flocculated oil sand fine tailings onto a deposition area to form a deposit and to enable the release water to flow away from the deposit, preferably done in a pipeline reactor and managing shear according to yield stress and CST information and achieves enhanced dewatering.
    Type: Application
    Filed: January 25, 2020
    Publication date: May 21, 2020
    Inventors: Adrian Peter Revington, Oladipo Omotoso, Patrick Sean Wells, Thomas Charles Hann, Marvin Harvey Weiss, Trevor Bugg, Jamie Eastwood, Stephen Joseph Young, Hugues Robert O'Neill, Ana Cristina Sanchez
  • Publication number: 20200123030
    Abstract: Various techniques are provided in relation to flocculation and/or dewatering of thick fine tailings, with shear conditioning of flocculated tailings material in accordance with a pre-determined shearing parameter, such as the Camp Number. One example method of treating thick fine tailings including dispersing a flocculant into the thick fine tailings to form a flocculating mixture; shearing the flocculating mixture to increase yield stress and produce a flocculated mixture; shear conditioning the flocculated mixture to decrease the yield stress and break down flocs, the shear conditioning being performed in accordance with the pre-determined shearing parameter to produce conditioned flocculated material within a water release zone where release water separates from the conditioned flocculated material. The conditioned flocculated material can then be subjected to dewatering, for example by depositing, thickening or filtering.
    Type: Application
    Filed: October 23, 2019
    Publication date: April 23, 2020
    Inventors: MARVIN WEISS, ANA SANCHEZ, TREVOR BUGG, ADRIAN REVINGTON
  • Patent number: 10590347
    Abstract: A process for dewatering oil sand fine tailings is provided and comprises a dispersion and floc build-up stage comprising in-line addition of a flocculent solution comprising an effective amount of flocculation reagent into a flow of the oil sand fine tailings; a gel stage wherein flocculated oil sand fine tailings is transported in-line and subjected to shear conditioning; a floc breakdown and water release stage wherein the flocculated oil sand fine tailings releases water and decreases in yield shear stress, while avoiding an oversheared zone; depositing the flocculated oil sand fine tailings onto a deposition area to form a deposit and to enable the release water to flow away from the deposit, preferably done in a pipeline reactor and managing shear according to yield stress and CST information and achieves enhanced dewatering.
    Type: Grant
    Filed: November 22, 2017
    Date of Patent: March 17, 2020
    Assignee: Suncor Energy Inc.
    Inventors: Adrian Peter Revington, Oladipo Omotoso, Patrick Sean Wells, Thomas Charles Hann, Marvin Harvey Weiss, Trevor Bugg, Jamie Eastwood, Stephen Joseph Young, Hugues Robert O'Neill, Ana Cristina Sanchez
  • Patent number: 10494277
    Abstract: Various techniques are provided in relation to flocculation and/or dewatering of thick fine tailings, with shear conditioning of flocculated tailings material in accordance with a pre-determined shearing parameter, such as the Camp Number. One example method of treating thick fine tailings including dispersing a flocculant into the thick fine tailings to form a flocculating mixture; shearing the flocculating mixture to increase yield stress and produce a flocculated mixture; shear conditioning the flocculated mixture to decrease the yield stress and break down flocs, the shear conditioning being performed in accordance with the pre-determined shearing parameter to produce conditioned flocculated material within a water release zone where release water separates from the conditioned flocculated material. The conditioned flocculated material can then be subjected to dewatering, for example by depositing, thickening or filtering.
    Type: Grant
    Filed: June 21, 2013
    Date of Patent: December 3, 2019
    Assignee: Suncor Energy Inc.
    Inventors: Marvin Weiss, Ana Sanchez, Trevor Bugg, Adrian Revington
  • Publication number: 20180079966
    Abstract: A process for dewatering oil sand fine tailings is provided and comprises a dispersion and floc build-up stage comprising in-line addition of a flocculent solution comprising an effective amount of flocculation reagent into a flow of the oil sand fine tailings; a gel stage wherein flocculated oil sand fine tailings is transported in-line and subjected to shear conditioning; a floc breakdown and water release stage wherein the flocculated oil sand fine tailings releases water and decreases in yield shear stress, while avoiding an oversheared zone; depositing the flocculated oil sand fine tailings onto a deposition area to form a deposit and to enable the release water to flow away from the deposit, preferably done in a pipeline reactor and managing shear according to yield stress and CST information and achieves enhanced dewatering.
    Type: Application
    Filed: November 22, 2017
    Publication date: March 22, 2018
    Inventors: Adrian Peter Revington, Oladipo Omotoso, Patrick Sean Wells, Thomas Charles Hann, Marvin Harvey Weiss, Trevor Bugg, Jamie Eastwood, Stephen Joseph Young, Hugues Robert O'Neill, Ana Cristina Sanchez
  • Patent number: 9909070
    Abstract: A process for dewatering oil sand fine tailings is provided and comprises a dispersion and floc build-up stage comprising in-line addition of a flocculent solution comprising an effective amount of flocculation reagent into a flow of the oil sand fine tailings; a gel stage wherein flocculated oil sand fine tailings is transported in-line and subjected to shear conditioning; a floc breakdown and water release stage wherein the flocculated oil sand fine tailings releases water and decreases in yield shear stress, while avoiding an oversheared zone; depositing the flocculated oil sand fine tailings onto a deposition area to form a deposit and to enable the release water to flow away from the deposit, preferably done in a pipeline reactor and managing shear according to yield stress and CST information and achieves enhanced dewatering.
    Type: Grant
    Filed: April 22, 2010
    Date of Patent: March 6, 2018
    Assignee: SUNCOR ENERGY INC.
    Inventors: Adrian Peter Revington, Oladipo Omotoso, Patrick Sean Wells, Thomas Charles Hann, Marvin Harvey Weiss, Trevor Bugg, Jamie Eastwood, Stephen Joseph Young, Hugues Robert O'Neill, Ana Cristina Sanchez
  • Publication number: 20170267558
    Abstract: Techniques are described that relate to enhancing flocculation and dewatering of thick fine tailings, for example by reducing process oscillations. One example method includes dispersing a flocculant into thick fine tailings having a turbulent flow regime to produce turbulent flocculating tailings; subjecting the turbulent flocculating tailings to shear to build up flocs and increase yield stress, to produce a flocculated material having a non-turbulent flow regime; and shear conditioning the flocculated material to decrease the yield stress and produce conditioned flocculated tailings within a water release zone; and dewatering the conditioned flocculated tailings, for example by employing sub-aerial deposition. The thick fine tailings may have a Bingham Reynolds Number of at least 40,000 upon flocculant addition.
    Type: Application
    Filed: May 30, 2017
    Publication date: September 21, 2017
    Inventors: TREVOR BUGG, ANA SANCHEZ, ADRIAN REVINGTON, JAMES PATRICK MACAULAY
  • Patent number: 9708206
    Abstract: Techniques are described that relate to enhancing flocculation and dewatering of thick fine tailings, for example by reducing process oscillations. One example method includes dispersing a flocculant into thick fine tailings having a turbulent flow regime to produce turbulent flocculating tailings; subjecting the turbulent flocculating tailings to shear to build up flocs and increase yield stress, to produce a flocculated material having a non-turbulent flow regime; and shear conditioning the flocculated material to decrease the yield stress and produce conditioned flocculated tailings within a water release zone; and dewatering the conditioned flocculated tailings, for example by employing sub-aerial deposition. The thick fine tailings may have a Bingham Reynolds Number of at least 40,000 upon flocculant addition.
    Type: Grant
    Filed: June 21, 2013
    Date of Patent: July 18, 2017
    Assignee: SUNCOR ENERGY INC.
    Inventors: Trevor Bugg, Ana Sanchez, Adrian Revington, James Patrick Macaulay
  • Publication number: 20150299005
    Abstract: Various techniques are provided in relation to flocculation and/or dewatering of thick fine tailings, with shear conditioning of flocculated tailings material in accordance with a pre-determined shearing parameter, such as the Camp Number. One example method of treating thick fine tailings including dispersing a flocculant into the thick fine tailings to form a flocculating mixture; shearing the flocculating mixture to increase yield stress and produce a flocculated mixture; shear conditioning the flocculated mixture to decrease the yield stress and break down flocs, the shear conditioning being performed in accordance with the pre-determined shearing parameter to produce conditioned flocculated material within a water release zone where release water separates from the conditioned flocculated material. The conditioned flocculated material can then be subjected to dewatering, for example by depositing, thickening or filtering.
    Type: Application
    Filed: June 21, 2013
    Publication date: October 22, 2015
    Inventors: MARVIN WEISS, ANA SANCHEZ, TREVOR BUGG, ADRIAN REVINGTON
  • Publication number: 20150203385
    Abstract: Techniques for injecting gas, such as compressed air, into thick fine tailings can promote water release or flocculant dosage reduction and thereby ameliorate dewatering operations of the thick fine tailings. Gas injection may be done before, during or after addition of a polymer flocculant into the thick fine tailings. Gas injection may be done in an amount, pressure or with gas bubbles so as to reduce the flocculant dosage requirements or increase the water release from released thick fine tailings.
    Type: Application
    Filed: June 21, 2013
    Publication date: July 23, 2015
    Inventors: Adrian Revington, Ana Sanchez, Trevor Bugg, Jamie Eastwood
  • Patent number: 9068776
    Abstract: Methods for drying oil sand fine tailings treated to comprise flocculated fine tailings, by deposition and farming techniques, are provided. A deposition cell is provided with a sloped bottom surface and the flocculated fine tailings are deposited to undergo channelless advancement in the cell while allowing drainage of release water. When the deposit is uneven, the deposit may be plowed while wet for spreading and ensuring water release conditioning is imparted thereto, while avoiding over-shearing, and maintaining sufficient shear strength to allow standing. Once a dried upper crust forms, the deposit may be harrowed to break up the crust, expose wet regions there-beneath and create furrows in the standing deposit. The methods improve the dewatering and drying of mature fine tailings in oil sands.
    Type: Grant
    Filed: October 30, 2009
    Date of Patent: June 30, 2015
    Assignee: SUNCOR ENERGY INC.
    Inventors: Trevor Bugg, Jamie Eastwood, Adrian Peter Revington, Marvin Harvey Weiss, Patrick Sean Wells, Thomas Charles Hann, Stephen Joseph Young, Hugues Robert O'Neill
  • Publication number: 20150176893
    Abstract: Techniques for dewatering thick fine tailings may include one or more pre-treatment steps, such as pre-shearing to reduce the yield stress prior to flocculation, hydrocarbon removal below a threshold to improve flocculation and dewatering, flocculant dosing on a clay basis, and providing certain properties of the thick fine tailings related to coarse and fine particle sizes and/or chemistry such as divalent cation content. Various advantages may result from pre-treatments based on thick fine tailings properties, such as reduced flocculant dosage requirements, improved dispersion of flocculant into the thick fine tailings and/or enhanced dewatering, for example. One or more of the pre-treatments may be performed.
    Type: Application
    Filed: June 21, 2013
    Publication date: June 25, 2015
    Inventors: Adrian Peter Revington, Ana Cristina Sanchez, Trevor Bugg, Oladipo Omotoso
  • Publication number: 20150144571
    Abstract: Techniques are described that relate to enhancing flocculation and dewatering of thick fine tailings, for example by reducing process oscillations. One example method includes dispersing a flocculant into thick fine tailings having a turbulent flow regime to produce turbulent flocculating tailings; subjecting the turbulent flocculating tailings to shear to build up flocs and increase yield stress, to produce a flocculated material having a non-turbulent flow regime; and shear conditioning the flocculated material to decrease the yield stress and produce conditioned flocculated tailings within a water release zone; and dewatering the conditioned flocculated tailings, for example by employing sub-aerial deposition. The thick fine tailings may have a Bingham Reynolds Number of at least 40,000 upon flocculant addition.
    Type: Application
    Filed: June 21, 2013
    Publication date: May 28, 2015
    Inventors: Trevor Bugg, Ana Sanchez, Adrian Revington, James Macaulay
  • Publication number: 20130081298
    Abstract: Methods for drying oil sand fine tailings treated to comprise flocculated fine tailings, by deposition and farming techniques, are provided. A deposition cell is provided with a sloped bottom surface and the flocculated fine tailings are deposited to undergo channelless advancement in the cell while allowing drainage of release water. When the deposit is uneven, the deposit may be plowed while wet for spreading and ensuring water release conditioning is imparted thereto, while avoiding over-shearing, and maintaining sufficient shear strength to allow standing. Once a dried upper crust forms, the deposit may be harrowed to break up the crust, expose wet regions there-beneath and create furrows in the standing deposit. The methods improve the dewatering and drying of mature fine tailings in oil sands.
    Type: Application
    Filed: October 30, 2009
    Publication date: April 4, 2013
    Applicant: SUNCOR ENERGY INC.
    Inventors: Trevor Bugg, Jamie Eastwood, Adrian Peter Revington, Marvin Harvey Weiss, Patrick Sean Wells, Thomas Charles Hann, Stephen Joseph Young, Hugues Robert O'Neill
  • Publication number: 20120175315
    Abstract: A process for dewatering oil sand fine tailings is provided and comprises a dispersion and floc build-up stage comprising in-line addition of a flocculent solution comprising an effective amount of flocculation reagent into a flow of the oil sand fine tailings; a gel stage wherein flocculated oil sand fine tailings is transported in-line and subjected to shear conditioning; a floc breakdown and water release stage wherein the flocculated oil sand fine tailings releases water and decreases in yield shear stress, while avoiding an oversheared zone; depositing the flocculated oil sand fine tailings onto a deposition area to form a deposit and to enable the release water to flow away from the deposit, preferably done in a pipeline reactor and managing shear according to yield stress and CST information and achieves enhanced dewatering.
    Type: Application
    Filed: April 22, 2010
    Publication date: July 12, 2012
    Applicant: SUNCOR ENERGY INC.
    Inventors: Adrian Peter Revington, Oladipo Omotoso, Patrick Sean Wells, Thomas Charles Hann, Marvin Harvey Weiss, Trevor Bugg, Jamie Eastwood, Stephen Joseph Young, Hugues Robert O'Neill, Ana Cristina Sanchez