Patents by Inventor Trevor Ewers

Trevor Ewers has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11121190
    Abstract: Provided is an optoelectronic device comprising an optoelectronic element and circuitry connected to the optoelectronic element, wherein the optoelectronic element comprises plural quantum dots or plural nanorods, and wherein the circuitry is configured to be capable of switching the optoelectronic element between a configuration in which the circuitry provides an effective forward bias voltage that causes the optoelectronic element to emit light and a configuration in which the circuitry provides an effective reverse bias voltage that causes the optoelectronic element to be capable of generating a photocurrent when light to which the optoelectronic element is sensitive strikes the optoelectronic element.
    Type: Grant
    Filed: March 23, 2017
    Date of Patent: September 14, 2021
    Assignees: Dow Global Technologies LLC, Rohm and Haas Company, The Board of Trustees of the University of Illinois, Rohm and Haas Electronic Materials LLC
    Inventors: Peter Trefonas, III, Kishori Deshpande, Trevor Ewers, Edward Greer, Jaebum Joo, Bong Hoon Kim, Nuri Oh, Jong Keun Park, Moonsub Shim, Jieqian Zhang
  • Patent number: 10949026
    Abstract: Provided is a method of creating an image on an array of optoelectronic elements comprising (a) providing a device comprising an array of optoelectronic elements and circuitry connected to each optoelectronic element, wherein the optoelectronic element comprises plural quantum dots or plural nanorods, and wherein the circuitry is configured to be capable of switching each optoelectronic element independently between an effective forward bias configuration and a reverse-bias configuration, (b) imposing an effective reverse bias on two or more of the optoelectronic elements, (c) providing circuitry that will detect the onset of photocurrent from an individual effective reverse biased optoelectronic element and that will respond to the photocurrent by changing the bias on the individual optoelectronic element to an effective forward bias.
    Type: Grant
    Filed: March 23, 2017
    Date of Patent: March 16, 2021
    Assignees: Dow Global Technologies LLC, Rohm and Haas Company, The Board of Trustees of the University of Illinois, Rohm and Haas Electronic Materials LLC
    Inventors: Peter Trefonas, III, Seongyong Cho, Kishori Deshpande, Trevor Ewers, Jaebum Joo, Edward Greer, Bong Hoon Kim, Nuri Oh, Jong Keun Park, Moonsub Shim, Jieqian Zhang
  • Publication number: 20210005668
    Abstract: Provided is a device comprising a light-emitting optoelectronic element and a photocurrent-generating optoelectronic element, wherein the device further comprises an opaque element that prevents light emitted by the light-emitting optoelectronic element from reaching the photocurrent-generating optoelectronic element via a pathway within the device.
    Type: Application
    Filed: March 23, 2017
    Publication date: January 7, 2021
    Inventors: Peter Trefonas, III, Seongyong Cho, Kishori Deshpande, Trevor Ewers, Edward Greer, Jaebum Joo, Nuri Oh, Jong Keun Park, Moonsub Shim, Jieqian Zhang
  • Publication number: 20190172878
    Abstract: Provided is an optoelectronic device comprising an optoelectronic element and circuitry connected to the optoelectronic element, wherein the optoelectronic element comprises plural quantum dots or plural nanorods, and wherein the circuitry is configured to be capable of switching the optoelectronic element between a configuration in which the circuitry provides an effective forward bias voltage that causes the optoelectronic element to emit light and a configuration in which the circuitry provides an effective reverse bias voltage that causes the optoelectronic element to be capable of generating a photocurrent when light to which the optoelectronic element is sensitive strikes the optoelectronic element.
    Type: Application
    Filed: March 23, 2017
    Publication date: June 6, 2019
    Inventors: Peter Trefonas, III, Kishori Deshpande, Trevor Ewers, Edward Greer, Jaebum Joo, Bong Hoon Kim, Nuri Oh, Jong Keun Park, Moonsub Shim, Jieqian Zhang
  • Publication number: 20190114032
    Abstract: Provided is a method of creating an image on an array of optoelectronic elements comprising (a) providing a device comprising an array of optoelectronic elements and circuitry connected to each optoelectronic element, wherein the optoelectronic element comprises plural quantum dots or plural nanorods, and wherein the circuitry is configured to be capable of switching each optoelectronic element independently between an effective forward bias configuration and a reverse-bias configuration, (b) imposing an effective reverse bias on two or more of the optoelectronic elements, (c) providing circuitry that will detect the onset of photocurrent from an individual effective reverse biased optoelectronic element and that will respond to the photocurrent by changing the bias on the individual optoelectronic element to an effective forward bias.
    Type: Application
    Filed: March 23, 2017
    Publication date: April 18, 2019
    Inventors: Peter Trefonas, III, Seongyong Cho, Kishori Deshpande, Trevor Ewers, Jaebum Joo, Edward Greer, Bong Hoon Kim, Nuri Oh, Jong Keun Park, Moonsub Shim, Jieqian Zhang
  • Publication number: 20190109290
    Abstract: Provided is a method of detecting the presence of an object in proximity to an optoelectronic device comprising (a) providing an optoelectronic device comprising a light-emitting optoelectronic element and a photocurrent-generating optoelectronic element, (b) imposing an effective forward bias voltage on the light-emitting optoelectronic element and an effective reverse bias voltage on the photocurrent-generating optoelectronic element, (c) bringing an object capable of scattering or reflecting light or a combination thereof to a distance of 0.1 to 5 mm from a point on the surface of the optoelectronic device from which light emerges, causing light that is emitted by the light-emitting optoelectronic element to be reflected or scattered so that the light falls upon the photocurrent-generating optoelectronic element.
    Type: Application
    Filed: March 23, 2017
    Publication date: April 11, 2019
    Applicants: Dow Global Technologies LLC, Rohm And Haas Company, The Board of Trustees of the University of Illinois, Rohm and Haas Electronic Materials
    Inventors: Peter Trefonas, III, Kishori Deshpande, Trevor Ewers, Edward Greer, Jaebum Joo, Bong Hoon Kim, Nuri Oh, John Rogers, Moonsub Shim, Jieqian Zhang
  • Patent number: 9927556
    Abstract: In one aspect, structures are provided that comprise (a) a one-dimensional periodic plurality of layers, wherein at least two of the layers have a refractive index differential sufficient to provide effective contrast; and (b) one or more light-emitting nanostructure materials effectively positioned with respect to the refractive index differential interface, wherein the structure provides a polarized output emission.
    Type: Grant
    Filed: March 10, 2016
    Date of Patent: March 27, 2018
    Assignees: The Board of Trustees of the University of Illinois, Rohm and Haas Electronic Materials LLC, Dow Global Technologies LLC
    Inventors: Brian Cunningham, Gloria G. See, Peter Trefonas, III, Jieqian Zhang, Jong Keun Park, Kevin Howard, Kishori Deshpande, Trevor Ewers
  • Publication number: 20170192129
    Abstract: In one aspect, structures are provided that comprise a photonic crystal comprising a dielectric layer comprising therein one or more light-emitting nanostructure materials. In a further aspect, structures are provided that comprise a dielectric layer comprising first and second sets of light-emitting nanostructure materials at differing depths within the dielectric layer.
    Type: Application
    Filed: December 29, 2016
    Publication date: July 6, 2017
    Inventors: Brian Cunningham, Gloria G. See, Peter Trefonas, III, Jieqian Zhang, Jong Keun Park, Kevin Howard, Kishori Deshpande, Trevor Ewers
  • Publication number: 20170045643
    Abstract: In one aspect, structures are provided that comprise (a) a one-dimensional periodic plurality of layers, wherein at least two of the layers have a refractive index differential sufficient to provide effective contrast; and (b) one or more light-emitting nanostructure materials effectively positioned with respect to the refractive index differential interface, wherein the structure provides a polarized output emission.
    Type: Application
    Filed: March 10, 2016
    Publication date: February 16, 2017
    Inventors: Brian Cunningham, Gloria G. See, Peter Trefonas, III, Jieqian Zhang, Jong Keun Park, Kevin Howard, Kishori Deshpande, Trevor Ewers