Patents by Inventor Tri T. Dang

Tri T. Dang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11938303
    Abstract: Techniques disclosed herein relate to determining a calibrated measurement value indicative of a physiological condition of a patient using sensor calibration data and a performance model. In some embodiments, the techniques involve obtaining one or more electrical signals from a sensing element of a sensing arrangement, where the one or more electrical signals are influenced by a physiological condition in a body of a patient. The techniques also involve obtaining calibration data associated with the sensing element from a data storage element of the sensing arrangement, converting the one or more electrical signals into one or more calibrated measurement parameters using the calibration data, obtaining a performance model associated with the sensing element, obtaining personal data associated with the patient, and determining, using the performance model and based on the personal data and the one or more calibrated measurement parameters, a calibrated output value indicative of the physiological condition.
    Type: Grant
    Filed: December 14, 2022
    Date of Patent: March 26, 2024
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Steven C. Jacks, Peter Ajemba, Akhil Srinivasan, Jacob E. Pananen, Sarkis Aroyan, Pablo Vazquez, Tri T. Dang, Ashley N. Sullivan, Raghavendhar Gautham
  • Publication number: 20240060111
    Abstract: An analyte biosensor is provided having an analyte biosensing layer and an ethylene oxide absorption layer. The ethylene oxide absorption layer is provided over the analyte biosensing layer. A method is also provided.
    Type: Application
    Filed: November 2, 2023
    Publication date: February 22, 2024
    Applicant: Medtronic MiniMed, Inc.
    Inventors: Robert McKinlay, Chi-En Lin, Tri T. Dang
  • Patent number: 11859231
    Abstract: Embodiments of the invention provide multilayer analyte sensors having material layers (e.g. high-density amine layers) and/or configurations of material layers that function to enhance sensor function, as well as methods for making and using such sensors. Typical embodiments of the invention include glucose sensors used in the management of diabetes.
    Type: Grant
    Filed: November 17, 2021
    Date of Patent: January 2, 2024
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Robert McKinlay, Tri T. Dang
  • Patent number: 11821022
    Abstract: An analyte biosensor is provided having an analyte biosensing layer and an ethylene oxide absorption layer. The ethylene oxide absorption layer is provided over the analyte biosensing layer. A method is also provided.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: November 21, 2023
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Robert McKinlay, Chi-En Lin, Tri T. Dang
  • Publication number: 20230110585
    Abstract: Techniques disclosed herein relate to determining a calibrated measurement value indicative of a physiological condition of a patient using sensor calibration data and a performance model. In some embodiments, the techniques involve obtaining one or more electrical signals from a sensing element of a sensing arrangement, where the one or more electrical signals are influenced by a physiological condition in a body of a patient. The techniques also involve obtaining calibration data associated with the sensing element from a data storage element of the sensing arrangement, converting the one or more electrical signals into one or more calibrated measurement parameters using the calibration data, obtaining a performance model associated with the sensing element, obtaining personal data associated with the patient, and determining, using the performance model and based on the personal data and the one or more calibrated measurement parameters, a calibrated output value indicative of the physiological condition.
    Type: Application
    Filed: December 14, 2022
    Publication date: April 13, 2023
    Inventors: Steven C. Jacks, Peter Ajemba, Akhil Srinivasan, Jacob E. Pananen, Sarkis Aroyan, Pablo Vazquez, Tri T. Dang, Ashley N. Sullivan, Raghavendhar Gautham
  • Patent number: 11565044
    Abstract: Medical devices, systems and methods are provided.
    Type: Grant
    Filed: September 12, 2019
    Date of Patent: January 31, 2023
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Steven C. Jacks, Peter Ajemba, Akhil Srinivasan, Jacob E. Pananen, Sarkis Aroyan, Pablo Vazquez, Tri T. Dang, Ashley N. Sullivan, Raghavendhar Gautham
  • Publication number: 20220073961
    Abstract: Embodiments of the invention provide multilayer analyte sensors having material layers (e.g. high-density amine layers) and/or configurations of material layers that function to enhance sensor function, as well as methods for making and using such sensors. Typical embodiments of the invention include glucose sensors used in the management of diabetes.
    Type: Application
    Filed: November 17, 2021
    Publication date: March 10, 2022
    Applicant: Medtronic MiniMed, Inc.
    Inventors: Robert McKinlay, Tri T. Dang
  • Patent number: 11186859
    Abstract: Embodiments of the invention provide multilayer analyte sensors having material layers (e.g. high-density amine layers) and/or configurations of material layers that function to enhance sensor function, as well as methods for making and using such sensors. Typical embodiments of the invention include glucose sensors used in the management of diabetes.
    Type: Grant
    Filed: February 7, 2018
    Date of Patent: November 30, 2021
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Robert McKinlay, Tri T. Dang
  • Publication number: 20210189450
    Abstract: An analyte biosensor is provided having an analyte biosensing layer and an ethylene oxide absorption layer. The ethylene oxide absorption layer is provided over the analyte biosensing layer. A method is also provided.
    Type: Application
    Filed: December 23, 2019
    Publication date: June 24, 2021
    Applicant: Medtronic MiniMed, Inc.
    Inventors: Robert McKinlay, Chi-En Lin, Tri T. Dang
  • Publication number: 20210077718
    Abstract: Medical devices, systems and methods are provided.
    Type: Application
    Filed: September 12, 2019
    Publication date: March 18, 2021
    Inventors: Steven C. Jacks, Peter Ajemba, Akhil Srinivasan, Jacob E. Pananen, Sarkis Aroyan, Pablo Vazquez, Tri T. Dang, Ashley N. Sullivan, Raghavendhar Gautham
  • Patent number: 10864286
    Abstract: The invention is directed to a competitive glucose binding affinity assay comprising a glucose receptor (typically mannan binding lectin) labeled with an assay fluorophore and a modified glucose analog (typically dextran) labeled with a reference fluorophore. In certain embodiments, the glucose analog is dextran and is coupled to both a reference fluorophore and a quencher dye (e.g. hexamethoxy crystalviolet-1). Optionally the reference fluorophore is blue shifted relative to the assay fluorophore.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: December 15, 2020
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Tri T. Dang, Soren Aasmul, Jesper Svenning Kristensen, Joseph Hanna, Robert McKinlay
  • Publication number: 20200171173
    Abstract: The invention is directed to a competitive glucose binding affinity assay comprising a glucose receptor (typically mannan binding lectin) labeled with an assay fluorophore and a modified glucose analog (typically dextran) labeled with a reference fluorophore. In certain embodiments, the glucose analog is dextran and is coupled to both a reference fluorophore and a quencher dye (e.g. hexamethoxy crystalviolet-1). Optionally the reference fluorophore is blue shifted relative to the assay fluorophore.
    Type: Application
    Filed: December 19, 2019
    Publication date: June 4, 2020
    Applicant: Medtronic MIniMed, Inc.
    Inventors: Tri T. Dang, Soren Aasmul, Jesper Svenning Kristensen, Joseph Hanna, Robert McKinlay
  • Patent number: 10543288
    Abstract: The invention is directed to a competitive glucose binding affinity assay comprising a glucose receptor (typically mannan binding lectin) labeled with an assay fluorophore and a modified glucose analog (typically dextran) labeled with a reference fluorophore. In certain embodiments, the glucose analog is dextran and is coupled to both a reference fluorophore and a quencher dye (e.g. hexamethoxy crystalviolet-1). Optionally the reference fluorophore is blue shifted relative to the assay fluorophore.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: January 28, 2020
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Tri T. Dang, Soren Aasmul, Jesper Svenning Kristensen, Joseph Hanna, Robert McKinlay
  • Publication number: 20190241926
    Abstract: Embodiments of the invention provide multilayer analyte sensors having material layers (e.g. high-density amine layers) and/or configurations of material layers that function to enhance sensor function, as well as methods for making and using such sensors. Typical embodiments of the invention include glucose sensors used in the management of diabetes.
    Type: Application
    Filed: February 7, 2018
    Publication date: August 8, 2019
    Applicant: MEDTRONIC MINIMED, INC.
    Inventors: Robert McKinlay, Tri T. Dang
  • Publication number: 20180311382
    Abstract: The invention is directed to a competitive glucose binding affinity assay comprising a glucose receptor (typically mannan binding lectin) labeled with an assay fluorophore and a modified glucose analog (typically dextran) labeled with a reference fluorophore. In certain embodiments, the glucose analog is dextran and is coupled to both a reference fluorophore and a quencher dye (e.g. hexamethoxy crystalviolet-1). Optionally the reference fluorophore is blue shifted relative to the assay fluorophore.
    Type: Application
    Filed: April 28, 2017
    Publication date: November 1, 2018
    Applicant: Medtronic MiniMed, Inc.
    Inventors: Tri T. Dang, Soren Aasmul, Jesper Svenning Kristensen, Joseph Hanna, Robert McKinlay
  • Patent number: 9989522
    Abstract: The invention relates to sensors configured to include compositions disposed in specific regions of the sensor in order to provide the sensors with enhanced functional properties, for example faster start-up times. These compositions include, for example, hygroscopic compositions, gas generating compositions and gas solvating compositions. While typical embodiments of the invention pertain to glucose sensors, the systems, methods and materials disclosed herein can be adapted for use with a wide variety of sensors known in the art.
    Type: Grant
    Filed: May 23, 2012
    Date of Patent: June 5, 2018
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Jesper Svenning Kristensen, Tri T. Dang, Katharine Knarreborg, Anubhuti Bansal
  • Patent number: 9848805
    Abstract: A new biostable glucose permeable polymer has been developed which is useful, for example, in implantable glucose sensors. This biostable glucose permeable polymer has a number of advantageous characteristics and, for example, does not undergo hydrolytic cleavage and degradation, thereby providing a composition that facilitates long term sensor stability in vivo. The versatile characteristics of this polymer allow it to be used in a variety of contexts, for example to form the body of an implantable glucose sensor. The invention includes the polymer composition, sensor systems formed from this polymer composition, and methods for making and using such sensor systems.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: December 26, 2017
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Tri T. Dang, Henrik Egesborg, Jakob Janting, Rajiv Shah, Daniel Aaskov, Joseph F. Hall, Soren Aasmul
  • Publication number: 20170172471
    Abstract: A new biostable glucose permeable polymer has been developed which is useful, for example, in implantable glucose sensors. This biostable glucose permeable polymer has a number of advantageous characteristics and, for example, does not undergo hydrolytic cleavage and degradation, thereby providing a composition that facilitates long term sensor stability in vivo. The versatile characteristics of this polymer allow it to be used in a variety of contexts, for example to form the body of an implantable glucose sensor. The invention includes the polymer composition, sensor systems formed from this polymer composition, and methods for making and using such sensor systems.
    Type: Application
    Filed: December 18, 2015
    Publication date: June 22, 2017
    Applicant: Medtronic MiniMed, Inc.
    Inventors: Tri T. Dang, Henrik Egesborg, Jakob Janting, Rajiv Shah, Daniel Aaskov, Joseph F. Hall, Soren Aasmul
  • Publication number: 20160354500
    Abstract: Medical devices are typically sterilized in processes used to manufacture such products and their sterilization by exposure to radiation is a common practice. Radiation has a number of advantages over other sterilization processes including a high penetrating ability, relatively low chemical reactivity, and instantaneous effects without the need to control temperature, pressure, vacuum, or humidity. Unfortunately, radiation sterilization can compromise the function of certain components of medical devices. For example, radiation sterilization can lead to loss of protein activity and/or lead to bleaching of various dye compounds. Embodiments of the invention provide methods and materials that can be used to protect medical devices from unwanted effects of radiation sterilization.
    Type: Application
    Filed: June 2, 2015
    Publication date: December 8, 2016
    Applicant: Medtronic MiniMed, Inc.
    Inventors: Tri T. Dang, Sarkis Aroyan, Jesper Svenning Kristensen
  • Patent number: 8660628
    Abstract: Embodiments of the invention provide analyte sensors having elements designed to modulate their chemical reactions as well as methods for making and using such sensors. In certain embodiments of the invention, the sensor includes an analyte modulating membrane that comprises a blended mixture of a linear polyurethane/polyurea polymer, and a branched acrylate polymer.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: February 25, 2014
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Jenn-Hann Larry Wang, Tri T. Dang, Brooks B. Cochran, John J. Mastrototaro, Rajiv Shah