Patents by Inventor Tristan Gottschalk

Tristan Gottschalk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11321833
    Abstract: A method for segmenting metal objects in projection images acquired using different projection geometries is provided. Each projection image shows a region of interest. A three-dimensional x-ray image is reconstructed from the projection images in the region of interest. A trained artificial intelligence segmentation algorithm is used to calculate first binary metal masks for each projection image. A three-dimensional intermediate data set of a reconstruction region that is larger than the region of interest is reconstructed by determining, for each voxel of the intermediate data set, as a metal value, a number of first binary metal masks showing metal in a pixel associated with a ray crossing the voxel. A three-dimensional binary metal mask is determined. Second binary metal masks are determined for each projection image by forward projecting the three-dimensional binary metal mask using the respective projection geometries.
    Type: Grant
    Filed: February 5, 2020
    Date of Patent: May 3, 2022
    Assignee: Siemens Healthcare GmbH
    Inventors: Holger Kunze, Peter Fischer, Björn Kreher, Tristan Gottschalk, Michael Manhart
  • Publication number: 20200250820
    Abstract: A method for segmenting metal objects in projection images acquired using different projection geometries is provided. Each projection image shows a region of interest. A three-dimensional x-ray image is reconstructed from the projection images in the region of interest. A trained artificial intelligence segmentation algorithm is used to calculate first binary metal masks for each projection image. A three-dimensional intermediate data set of a reconstruction region that is larger than the region of interest is reconstructed by determining, for each voxel of the intermediate data set, as a metal value, a number of first binary metal masks showing metal in a pixel associated with a ray crossing the voxel. A three-dimensional binary metal mask is determined. Second binary metal masks are determined for each projection image by forward projecting the three-dimensional binary metal mask using the respective projection geometries.
    Type: Application
    Filed: February 5, 2020
    Publication date: August 6, 2020
    Inventors: Holger Kunze, Peter Fischer, Björn Kreher, Tristan Gottschalk, Michael Manhart