Patents by Inventor Troy A. Nergaard

Troy A. Nergaard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230264594
    Abstract: An EVSE with additional switches and control to allow for 120V/240V split-phase homes to be powered by an electric vehicle with only two AC power pins in its charge port.
    Type: Application
    Filed: February 23, 2023
    Publication date: August 24, 2023
    Inventors: Troy NERGAARD, Anil PARYANI, Jiaqi LIANG, Moritz BOECKER
  • Patent number: 11258266
    Abstract: The disclosed system provides an adaptive control system technique generally related to distributed energy resources (DERs) located in distribution circuits. More specifically, the system technique relates to a DER with both active and reactive generation capability. In an embodiment, the system measures a voltage phase angle and a current phase angle of distribution feeder circuit, and measures a voltage value output by a power converter. The system calculates an active power setpoint value and a reactive power setpoint value of the power converter based on the measured voltage value, and the measured voltage phase angle and current phase angle. The system then sets the active and reactive power setpoint values on the power converter. The disclosed system automatically adjusts the setpoints to real-time load characteristics of the distribution feeder circuit, increases distribution feeder hosting capacity, and enables DERs to integrate in distribution feeders more efficiently.
    Type: Grant
    Filed: May 23, 2018
    Date of Patent: February 22, 2022
    Assignee: Doosan GridTech, Inc.
    Inventors: Farshid Shariatzadeh, Troy Nergaard, David Kaplan
  • Publication number: 20190363543
    Abstract: The disclosed system provides an adaptive control system technique generally related to distributed energy resources (DERs) located in distribution circuits. More specifically, the system technique relates to a DER with both active and reactive generation capability. In an embodiment, the system measures a voltage phase angle and a current phase angle of distribution feeder circuit, and measures a voltage value output by a power converter. The system calculates an active power setpoint value and a reactive power setpoint value of the power converter based on the measured voltage value, and the measured voltage phase angle and current phase angle. The system then sets the active and reactive power setpoint values on the power converter. The disclosed system automatically adjusts the setpoints to real-time load characteristics of the distribution feeder circuit, increases distribution feeder hosting capacity, and enables DERs to integrate in distribution feeders more efficiently.
    Type: Application
    Filed: May 23, 2018
    Publication date: November 28, 2019
    Inventors: Farshid Shariatzadeh, Troy Nergaard, David Kaplan
  • Patent number: 9787112
    Abstract: An inter-protocol charging adapter for equipment to be charged via a bus includes: first connectors corresponding to a first charging protocol that requires the bus to be energized before the equipment closes onto the bus; second connectors corresponding to a second charging protocol that does not energize the bus before the equipment closes onto the bus; and a boost converter coupled to the bus and to at least one of the second connectors, wherein the boost converter uses energy from the second connector to energize the bus before the equipment closes onto the bus.
    Type: Grant
    Filed: April 2, 2013
    Date of Patent: October 10, 2017
    Assignee: Tesla, Inc.
    Inventors: Martin Sukup, Troy A. Nergaard, Kristoffer J. Donhowe
  • Publication number: 20160036256
    Abstract: An inter-protocol charging adapter for equipment to be charged via a bus includes: first connectors corresponding to a first charging protocol that requires the bus to be energized before the equipment closes onto the bus; second connectors corresponding to a second charging protocol that does not energize the bus before the equipment closes onto the bus; and a boost converter coupled to the bus and to at least one of the second connectors, wherein the boost converter uses energy from the second connector to energize the bus before the equipment closes onto the bus.
    Type: Application
    Filed: April 2, 2013
    Publication date: February 4, 2016
    Applicant: Tesla Motors, Inc.
    Inventors: Martin SUKUP, Troy A. NERGAARD, Kristoffer J. Donhowe
  • Patent number: 8933661
    Abstract: An apparatus and method efficiently integrating inductive and conductive charging systems, including embodiments directed towards enabling user selection of either, or both, of conductive and inductive charging. Conductive charging and inductive charging both have, in certain contexts or when judged by different criteria, advantages over the other. Systems and methods relying on one or the other would not have as wide-spread value to a user with opportunities to access both types of charging modalities.
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: January 13, 2015
    Assignee: Tesla Motors, Inc.
    Inventors: Troy A. Nergaard, Jeffrey Brian Straubel
  • Patent number: 8810208
    Abstract: The apparatus for charging an energy storage system (ESS) from an AC line voltage includes a boost stage for converting the AC line voltage to a first ESS charging voltage; an isolation stage, coupled to the boost stage, for converting the first ESS charging voltage to a second ESS charging voltage with the second ESS charging voltage less than the first ESS charging voltage, the isolation stage removing a common mode current between the ESS and the boost stage; a configurator, responsive to a control signal, to set a direct communication of the first ESS charging voltage to the ESS in a bypass mode and to open the direct communication of the first ESS charging voltage to the ESS in an isolation mode; and a controller, coupled to the configurator, for setting the modes responsive to a battery voltage, a peak of the AC line voltage, and a total leakage current at an input of the AC line voltage, the controller asserting the control signal to the configurator.
    Type: Grant
    Filed: March 10, 2011
    Date of Patent: August 19, 2014
    Assignee: Tesla Motors, Inc.
    Inventors: Jean-Pierre Krauer, Nicholas Robert Kalayjian, Troy A. Nergaard
  • Patent number: 8638063
    Abstract: A charging system and method that improves utilization of available AC power during onboard charging of energy storage systems of electric vehicles. An onboard charging method for an energy storage system of an electric vehicle, the method using an AC power source, includes a) establishing a maximum DC charging current for the energy storage system responsive to a control signal indicating real-time available current/power from the AC source; and b) controlling a charging system to provide an actual DC charging current, up to the maximum DC charging current, to the energy storage system.
    Type: Grant
    Filed: October 13, 2010
    Date of Patent: January 28, 2014
    Assignee: Tesla Motors, Inc.
    Inventors: Anil Paryani, Troy A. Nergaard, Andrew Baglino
  • Patent number: 8627534
    Abstract: A contamination cleaner for a socket of a charging connector used with a charging station for an electric vehicle wherein the charging connector mates to a charging coupler of the electric vehicle during charging includes a housing mechanically configured generally similarly to the charging coupler enabling the housing to mechanically mate to the charging connector; and a cleaning contact, coupled to the housing and complementary to the socket, for engaging the socket and removing surface contaminants from the socket whenever the housing mechanically mates to the charging connector.
    Type: Grant
    Filed: April 20, 2011
    Date of Patent: January 14, 2014
    Assignee: Tesla Motors, Inc.
    Inventors: Christopher Hugo Van Dyke, Scott Ira Kohn, Vineet Haresh Mehta, Troy A. Nergaard
  • Publication number: 20130285602
    Abstract: An apparatus and method efficiently integrating inductive and conductive charging systems, including embodiments directed towards enabling user selection of either, or both, of conductive and inductive charging. Conductive charging and inductive charging both have, in certain contexts or when judged by different criteria, advantages over the other. Systems and methods relying on one or the other would not have as wide-spread value to a user with opportunities to access both types of charging modalities.
    Type: Application
    Filed: April 30, 2012
    Publication date: October 31, 2013
    Applicant: TESLA MOTORS, INC.
    Inventors: Troy A. Nergaard, Jeffrey Brian Straubel
  • Patent number: 8324863
    Abstract: A voltage converter for charging an energy storage module from an alternating current line voltage, includes a first charging stage, coupled to the energy storage module, converting the line voltage to a first rectified direct current module charging voltage communicated to the energy storage module, the first rectified direct current module charging voltage greater than the line voltage, the first charging stage including an inductance for communicating a first charging current to the energy storage module; a second charging stage, switchably coupled serially with the first charging stage, down-converting the alternating current line voltage to a second rectified direct current module voltage, the second rectified direct current module voltage less than the first rectified direct current module charging voltage, wherein the second charging stage produces a second charging current not greater than the first charging current; and a controller for selectably switching the second charging stage serially with the
    Type: Grant
    Filed: April 19, 2010
    Date of Patent: December 4, 2012
    Assignee: Tesla Motors, Inc.
    Inventor: Troy A. Nergaard
  • Publication number: 20120266914
    Abstract: A contamination cleaner for a socket of a charging connector used with a charging station for an electric vehicle wherein the charging connector mates to a charging coupler of the electric vehicle during charging includes a housing mechanically configured generally similarly to the charging coupler enabling the housing to mechanically mate to the charging connector; and a cleaning contact, coupled to the housing and complementary to the socket, for engaging the socket and removing surface contaminants from the socket whenever the housing mechanically mates to the charging connector.
    Type: Application
    Filed: April 20, 2011
    Publication date: October 25, 2012
    Applicant: Tesla Motors, Inc.
    Inventors: Christopher Hugo Van Dyke, Scott Ira Kohn, Vineet Haresh Mehta, Troy A. Nergaard
  • Publication number: 20120229098
    Abstract: The apparatus for charging an energy storage system (ESS) from an AC line voltage includes a boost stage for converting the AC line voltage to a first ESS charging voltage; an isolation stage, coupled to the boost stage, for converting the first ESS charging voltage to a second ESS charging voltage with the second ESS charging voltage less than the first ESS charging voltage, the isolation stage removing a common mode current between the ESS and the boost stage; a configurator, responsive to a control signal, to set a direct communication of the first ESS charging voltage to the ESS in a bypass mode and to open the direct communication of the first ESS charging voltage to the ESS in an isolation mode; and a controller, coupled to the configurator, for setting the modes responsive to a battery voltage, a peak of the AC line voltage, and a total leakage current at an input of the AC line voltage, the controller asserting the control signal to the configurator.
    Type: Application
    Filed: March 10, 2011
    Publication date: September 13, 2012
    Applicant: Tesla Motors, Inc.
    Inventors: Jean-Pierre Krauer, Nicholas Robert Kalayjian, Troy A. Nergaard
  • Publication number: 20120091953
    Abstract: A charging system and method that improves utilization of available AC power during onboard charging of energy storage systems of electric vehicles. An onboard charging method for an energy storage system of an electric vehicle, the method using an AC power source, includes a) establishing a maximum DC charging current for the energy storage system responsive to a control signal indicating real-time available current/power from the AC source; and b) controlling a charging system to provide an actual DC charging current, up to the maximum DC charging current, to the energy storage system.
    Type: Application
    Filed: October 13, 2010
    Publication date: April 19, 2012
    Applicant: Tesla Motors, Inc.
    Inventors: Anil Paryani, Troy A. Nergaard, Andrew Baglino
  • Publication number: 20110254512
    Abstract: A voltage converter for charging an energy storage module from an alternating current line voltage, includes a first charging stage, coupled to the energy storage module, converting the line voltage to a first rectified direct current module charging voltage communicated to the energy storage module, the first rectified direct current module charging voltage greater than the line voltage, the first charging stage including an inductance for communicating a first charging current to the energy storage module; a second charging stage, switchably coupled serially with the first charging stage, down-converting the alternating current line voltage to a second rectified direct current module voltage, the second rectified direct current module voltage less than the first rectified direct current module charging voltage, wherein the second charging stage produces a second charging current not greater than the first charging current; and a controller for selectably switching the second charging stage serially with the
    Type: Application
    Filed: April 19, 2010
    Publication date: October 20, 2011
    Applicant: Tesla Motors, Inc.
    Inventor: Troy A. Nergaard