Patents by Inventor Troy Alan Berens

Troy Alan Berens has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9331631
    Abstract: Thin film photovoltaic devices that include at least one lead bar extending through a connection aperture defined in the encapsulation substrate are provided. The photovoltaic device can include: a transparent substrate; a plurality of photovoltaic cells on the transparent substrate; a first conductive ribbon electrically connected to a first photovoltaic cell; an encapsulation substrate laminated to the transparent substrate such that the plurality of photovoltaic cells and the conductive ribbon are positioned between the transparent substrate and the encapsulation substrate; and, a first lead bar extending through a first connection aperture defined in the encapsulation substrate. The first lead bar is electrically connected to the first conductive ribbon. For example, a meltable conductive material can be connected to the first lead bar and to the first conductive ribbon to establish an electrical connection therebetween.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: May 3, 2016
    Assignee: First Solar, Inc.
    Inventors: Kim James Clark, Max William Reed, Bradley Robert Crume, Troy Alan Berens
  • Patent number: 9147794
    Abstract: Thin film photovoltaic devices are generally provided having three terminals. In one embodiment, the thin film photovoltaic device can include a first submodule defined by a first plurality of photovoltaic cells between a first dead cell and a first terminal cell; a second submodule defined by a second plurality of photovoltaic cells between a second dead cell and a second terminal cell; and a joint bus bar electrically connected to the first dead cell and the second dead cell. The first dead cell is adjacent to the second dead cell, with the first dead cell being separated from the second dead cell via a separation scribe. Methods are also generally provided for forming a thin film photovoltaic device.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: September 29, 2015
    Assignee: First Solar, Inc.
    Inventors: Scott Daniel Feldman-Peabody, Luke W. Jacobson, Robert A. Garber, Fred Harper Seymour, Troy Alan Berens
  • Publication number: 20140216547
    Abstract: Thin film photovoltaic devices including a transparent substrate defining a front surface area; a photovoltaic thin film stack on the transparent substrate; and, a back panel defining a rear surface area are provided. The photovoltaic thin film stack is positioned between the transparent substrate and the back panel. The front surface area can be less than the rear surface area (e.g., about 90% to about 99.9% of the rear surface area). As such, the back panel can extend farther than the transparent substrate along at least one edge of the device. An encapsulant layer defining an encapsulant surface area can be positioned between the photovoltaic thin film stack and the back panel. The encapsulant surface area can be greater than or equal to the front surface area or can be less than or equal to the rear surface area.
    Type: Application
    Filed: February 4, 2013
    Publication date: August 7, 2014
    Applicant: PRIMESTAR SOLAR, INC.
    Inventors: Troy Alan Berens, Max William Reed, Jeffrey Scott Erlbaum, David W. Vernooy, Venkata Sai Rahul Chandra Abbaraju, Boaz Alperson
  • Publication number: 20140060622
    Abstract: Thin film photovoltaic devices that include a direct connection to at least one lead bar extending through a connection aperture defined in the encapsulation substrate to electrically connect to an underlying conductive ribbon are provided. The photovoltaic device can include: a transparent substrate; a plurality of photovoltaic cells; a conductive ribbon electrically connected to a photovoltaic cell; an encapsulation substrate laminated to the transparent substrate such that the plurality of photovoltaic cells and the conductive ribbon are positioned between the transparent substrate and the encapsulation substrate; and a lead bar extending through a connection aperture defined in the encapsulation substrate and electrically connected to the conductive ribbon. The lead bar can define a lead tab that establishes a mechanical connection having a biasing force between the lead bar and the conductive ribbon.
    Type: Application
    Filed: August 31, 2012
    Publication date: March 6, 2014
    Applicant: PRIMESTAR SOLAR, INC.
    Inventors: Kim James Clark, Max William Reed, Bradley Robert Crume, Troy Alan Berens
  • Publication number: 20140060621
    Abstract: Thin film photovoltaic devices that include at least one lead bar extending through a connection aperture defined in the encapsulation substrate are provided. The photovoltaic device can include: a transparent substrate; a plurality of photovoltaic cells on the transparent substrate; a first conductive ribbon electrically connected to a first photovoltaic cell; an encapsulation substrate laminated to the transparent substrate such that the plurality of photovoltaic cells and the conductive ribbon are positioned between the transparent substrate and the encapsulation substrate; and, a first lead bar extending through a first connection aperture defined in the encapsulation substrate. The first lead bar is electrically connected to the first conductive ribbon. For example, a meltable conductive material can be connected to the first lead bar and to the first conductive ribbon to establish an electrical connection therebetween.
    Type: Application
    Filed: August 31, 2012
    Publication date: March 6, 2014
    Applicant: PRIMESTAR SOLAR, INC.
    Inventors: Kim James Clark, Max William Reed, Bradley Robert Crume, Troy Alan Berens
  • Patent number: 8513516
    Abstract: Photovoltaic devices including an insulating layer and an intra-laminate disk layer on a plurality of thin film layers are provided. A first conductive strip, defining a first lead, is positioned on the insulating layer and connected to a first bus bar. A second conductive strip is positioned on the insulating layer and connected to a second bus bar. An adhesive layer is over the device and defines an adhesive gap through which the first lead and the second lead extend. An encapsulating substrate is on the adhesive layer, and defines a connection aperture through which the first lead and the second lead extend. The intra-laminate disk layer is positioned under the adhesive gap defined by the adhesive layer and the connection aperture defined by the encapsulating substrate. Methods of manufacturing photovoltaic devices are also provided.
    Type: Grant
    Filed: August 27, 2010
    Date of Patent: August 20, 2013
    Assignee: Primestar Solar, Inc.
    Inventor: Troy Alan Berens
  • Publication number: 20130153002
    Abstract: Photovoltaic devices that include a transparent substrate; a plurality of thin film layers defining a plurality of photovoltaic cells connected in series to each other on the transparent substrate; a first lead connected to one of the photovoltaic cells; and an encapsulation substrate on the plurality of thin film layers are provided. The encapsulation substrate defines a connection aperture through which the first lead extends. A support insert, which defines a plug portion and a flange, can be positioned within the connection aperture such that the flange extends over the back surface of the encapsulation substrate. The support insert can be configured to mechanically support the transparent substrate in an area opposite to the connection aperture while still enabling the first lead to extend through the connection aperture while the support insert is in place within the connection aperture.
    Type: Application
    Filed: December 15, 2011
    Publication date: June 20, 2013
    Applicant: PrimeStar Solar, Inc.
    Inventors: Max William Reed, Bradley Crume, Loucas Tsakalakos, Jeffrey Scott Erlbaum, Troy Alan Berens, Jeffrey Todd Knapp
  • Publication number: 20130153029
    Abstract: Methods are generally provided for adhering a support insert within a connection aperture defined in an encapsulating substrate of a photovoltaic device that has a first lead. The connection aperture generally has a perimeter defined by an aperture wall of the encapsulating substrate. The method can, in one particular embodiment, include threading the first lead through the connection aperture; and positioning a support insert within the connection aperture such that the first lead is still able to extend through the connection aperture. The support insert can generally define a channel within its construction that extends from a channel opening in the support insert to an exit port. An adhesive composition can be injected into the channel opening such that a first amount of the adhesive composition flows through the channel and out of the exit port to bond the support insert within the connection aperture.
    Type: Application
    Filed: December 15, 2011
    Publication date: June 20, 2013
    Applicant: PRIMESTAR SOLAR, INC.
    Inventors: Bradley Crume, Max William Reed, Loucas Tsakalakos, Jeffrey Scott Erlbaum, Troy Alan Berens, Jeffrey Todd Knapp, Venkata Sai Rahul Chandra Abbaraju
  • Publication number: 20130153001
    Abstract: Photovoltaic devices are provided that include: a transparent substrate; a plurality of thin film layers on the glass substrate; and, a first lead connected to one of the photovoltaic cells. An encapsulation substrate is positioned on the plurality of thin film layers, and defines a connection aperture through which the first lead extends. The connection aperture has a perimeter defined by an aperture wall of the encapsulation substrate. A support insert is positioned within the connection aperture to mechanically support the transparent substrate in the area of the connection aperture. The support insert is configured such that the first lead is able to extend through the connection aperture while the support insert in place within the connection aperture. A kit is also provided that includes an encapsulation substrate defining a connection aperture; and, a support insert configured to be coupled within the connection aperture of the encapsulation substrate.
    Type: Application
    Filed: December 15, 2011
    Publication date: June 20, 2013
    Applicant: PRIMESTAR SOLAR, INC.
    Inventors: Max William Reed, Jeffrey Todd Knapp, Troy Alan Berens, Venkata Sai Rahul Chandra Abbaraju, Bradley Crume
  • Publication number: 20130153003
    Abstract: Photovoltaic devices are provided that include: a transparent substrate; a plurality of thin film layers on the glass substrate; and, a first lead connected to one of the photovoltaic cells. An encapsulation substrate can be positioned on the plurality of thin film layers, and defines a connection aperture through which the first lead extends. The connection aperture generally has a perimeter defined by an aperture wall of the encapsulation substrate. An adhesive plug can be positioned within the connection aperture to mechanically support the transparent substrate in the area of the connection aperture. A back plate or back washer can also be bonded to the adhesive plug and/or back surface of the encapsulation substrate to help dissipate energy in and/or provide support to the encapsulation substrate. Methods are also provided for mechanically supporting a transparent substrate in an area opposite to a connection aperture defined in an encapsulation substrate.
    Type: Application
    Filed: December 15, 2011
    Publication date: June 20, 2013
    Applicant: PRIMESTAR SOLAR, INC.
    Inventors: Troy Alan Berens, Bradley Crume, Loucas Tsakalakos, Jeffrey Scott Erlbaum, Max William Reed
  • Publication number: 20130133712
    Abstract: Thin film photovoltaic devices are generally provided having three terminals. In one embodiment, the thin film photovoltaic device can include a first submodule defined by a first plurality of photovoltaic cells between a first dead cell and a first terminal cell; a second submodule defined by a second plurality of photovoltaic cells between a second dead cell and a second terminal cell; and a joint bus bar electrically connected to the first dead cell and the second dead cell. The first dead cell is adjacent to the second dead cell, with the first dead cell being separated from the second dead cell via a separation scribe. Methods are also generally provided for forming a thin film photovoltaic device.
    Type: Application
    Filed: November 30, 2011
    Publication date: May 30, 2013
    Applicant: PRIMESTAR SOLAR, INC.
    Inventors: Scott Daniel Feldman-Peabody, Luke W. Jacobson, Robert A. Garber, Fred Harper Seymour, Troy Alan Berens
  • Publication number: 20130133713
    Abstract: Thin film photovoltaic devices including a first submodule and a second submodule are provided. In the device, a common insulation layer can be positioned over first submodule to extend from a joint bus bar to a first bus bar. A first lead can be electrically connected to the first bus bar, and a second lead can be electrically connected to the joint bus bar. A linking insulation layer can be positioned over the first submodule, the second submodule, and the joint bus bar such that the linking insulation layer extends from the first bus bar to the second bus bar. A conductive link can be electrically connected to the first bus bar and the second bus bar, but electrically isolated from the joint bus bar.
    Type: Application
    Filed: November 30, 2011
    Publication date: May 30, 2013
    Applicant: PRIMESTAR SOLAR, INC.
    Inventor: Troy Alan Berens
  • Publication number: 20130133714
    Abstract: Thin film photovoltaic devices are provided that include a first submodule and a second submodule. An insulation layer can be positioned over first submodule and second submodule such that the insulation layer extends from a first bus bar to a second bus bar. A conductive link can be positioned on the insulation layer and electrically connected to the first bus bar and the second bus bar. An encapsulation substrate can be positioned over the first submodule and the second submodule. A first prong can extend through a first aperture defined in the encapsulation substrate to contact the conductive link to establish an electrical connection thereto, and a second prong can extend through a second aperture defined in the encapsulation substrate to contact the joint bus bar to establish an electrical connection thereto.
    Type: Application
    Filed: November 30, 2011
    Publication date: May 30, 2013
    Applicant: PRIMESTAR SOLAR, INC.
    Inventor: Troy Alan Berens
  • Publication number: 20130048055
    Abstract: A photovoltaic device is generally provided that includes a plurality of thin film layers on a glass substrate. The plurality of thin film layers define a plurality of photovoltaic cells connected in series to each other. An insulating layer is positioned on the plurality of thin film layers, and a sealing layer on the thin film layers, wherein the sealing layer comprises a polymeric material. A first lead is positioned on the insulating layer and connected to a first bus bar. An encapsulating substrate is positioned on the adhesive layer, wherein the encapsulating substrate defines a connection aperture through which the first lead extends. The sealing layer is positioned under the connection aperture defined by the encapsulating substrate to act as a moisture barrier therethrough. Methods are also generally provided for manufacturing a photovoltaic device.
    Type: Application
    Filed: August 25, 2011
    Publication date: February 28, 2013
    Applicant: PrimeStar Solar, Inc.
    Inventors: Max William Reed, Troy Alan Berens
  • Publication number: 20120024349
    Abstract: Photovoltaic devices including an insulating layer and an intra-laminate disk layer on a plurality of thin film layers are provided. A first conductive strip, defining a first lead, is positioned on the insulating layer and connected to a first bus bar. A second conductive strip is positioned on the insulating layer and connected to a second bus bar. An adhesive layer is over the device and defines an adhesive gap through which the first lead and the second lead extend. An encapsulating substrate is on the adhesive layer, and defines a connection aperture through which the first lead and the second lead extend. The intra-laminate disk layer is positioned under the adhesive gap defined by the adhesive layer and the connection aperture defined by the encapsulating substrate. Methods of manufacturing photovoltaic devices are also provided.
    Type: Application
    Filed: August 27, 2010
    Publication date: February 2, 2012
    Inventor: Troy Alan Berens