Patents by Inventor Troy Holsing

Troy Holsing has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240206849
    Abstract: A method of generating an image of a medical instrument using a medical apparatus includes a catheter, a medical instrument assembly, and an imaging assembly. The catheter has a first working channel terminating with a first distal exit, and a second working channel terminating with a second distal exit. The medical instrument assembly has a medical instrument adapted to be housed within the first working channel and adapted to be extendable through the first distal exit to an extended position beyond the first distal exit to intercept a target tissue. The imaging assembly includes an imaging device adapted to be housed within the second working channel and is extendable through the second distal exit to an extended position beyond the second distal exit. The imaging device is adapted to generate an image in an image plane of the distal end of the medical instrument when the distal end of the medical instrument is extended out the first distal exit.
    Type: Application
    Filed: November 29, 2023
    Publication date: June 27, 2024
    Inventors: Mark Hunter, Troy Holsing
  • Patent number: 10264947
    Abstract: A surgical instrument navigation system is provided that visually simulates a virtual volumetric scene of a body cavity of a patient from a point of view of a surgical instrument residing in the cavity of the patient. The surgical instrument navigation system includes: a surgical instrument; an imaging device which is operable to capture scan data representative of an internal region of interest within a given patient; a tracking subsystem that employs electro-magnetic sensing to capture in real-time position data indicative of the position of the surgical instrument; a data processor which is operable to render a volumetric, perspective image of the internal region of interest from a point of view of the surgical instrument; and a display which is operable to display the volumetric perspective image of the patient.
    Type: Grant
    Filed: August 22, 2011
    Date of Patent: April 23, 2019
    Assignee: Veran Medical Technologies, Inc.
    Inventors: Troy Holsing, Mark Hunter
  • Publication number: 20160354159
    Abstract: A surgical instrument navigation system is provided that visually simulates a virtual volumetric scene of a body cavity of a patient from a point of view of a surgical instrument residing in the cavity of the patient. The surgical instrument navigation system includes: a surgical instrument; an imaging device which is operable to capture scan data representative of an internal region of interest within a given patient; a tracking subsystem that employs electro-magnetic sensing to capture in real-time position data indicative of the position of the surgical instrument; a data processor which is operable to render a volumetric, perspective image of the internal region of interest from a point of view of the surgical instrument; and a display which is operable to display the volumetric perspective image of the patient.
    Type: Application
    Filed: January 6, 2016
    Publication date: December 8, 2016
    Inventors: Mark Hunter, Marc Wennogle, Troy Holsing
  • Patent number: 8696549
    Abstract: A surgical instrument navigation system is provided that visually simulates a virtual volumetric scene of a body cavity of a patient from a point of view of a surgical instrument residing in the cavity of the patient. The surgical instrument navigation system includes: a surgical instrument; an imaging device which is operable to capture scan data representative of an internal region of interest within a given patient; a tracking subsystem that employs electro-magnetic sensing to capture in real-time position data indicative of the position of the surgical instrument; a data processor which is operable to render a volumetric, perspective image of the internal region of interest from a point of view of the surgical instrument; and a display which is operable to display the volumetric perspective image of the patient.
    Type: Grant
    Filed: August 22, 2011
    Date of Patent: April 15, 2014
    Assignee: Veran Medical Technologies, Inc.
    Inventors: Troy Holsing, Mark Hunter
  • Patent number: 8320653
    Abstract: Apparatus and methods are disclosed for the calibration of a tracked imaging probe for use in image-guided surgical systems. The invention uses actual image data collected from an easily constructed calibration jig to provide data for the calibration algorithm. The calibration algorithm analytically develops a geometric relationship between the probe and the image so objects appearing in the collected image can be accurately described with reference to the probe. The invention can be used with either two or three dimensional image data-sets. The invention also has the ability to automatically determine the image scale factor when two dimensional data-sets are used.
    Type: Grant
    Filed: November 8, 2010
    Date of Patent: November 27, 2012
    Assignee: Medtronic Navigation, Inc.
    Inventors: Troy Holsing, Gordon Goodchild
  • Publication number: 20120071753
    Abstract: A surgical instrument navigation system is provided that visually simulates a virtual volumetric scene of a body cavity of a patient from a point of view of a surgical instrument residing in the cavity of the patient. The surgical instrument navigation system includes: a surgical instrument; an imaging device which is operable to capture scan data representative of an internal region of interest within a given patient; a tracking subsystem that employs electro-magnetic sensing to capture in real-time position data indicative of the position of the surgical instrument; a data processor which is operable to render a volumetric, perspective image of the internal region of interest from a point of view of the surgical instrument; and a display which is operable to display the volumetric perspective image of the patient.
    Type: Application
    Filed: August 22, 2011
    Publication date: March 22, 2012
    Inventors: Mark Hunter, Marc Wennogle, Troy Holsing
  • Publication number: 20120059220
    Abstract: A surgical instrument navigation system is provided that visually simulates a virtual volumetric scene of a body cavity of a patient from a point of view of a surgical instrument residing in the cavity of the patient. The surgical instrument navigation system includes: a surgical instrument; an imaging device which is operable to capture scan data representative of an internal region of interest within a given patient; a tracking subsystem that employs electro-magnetic sensing to capture in real-time position data indicative of the position of the surgical instrument; a data processor which is operable to render a volumetric, perspective image of the internal region of interest from a point of view of the surgical instrument; and a display which is operable to display the volumetric perspective image of the patient.
    Type: Application
    Filed: August 22, 2011
    Publication date: March 8, 2012
    Inventors: Troy Holsing, Mark Hunter
  • Publication number: 20120059248
    Abstract: A surgical instrument navigation system is provided that visually simulates a virtual volumetric scene of a body cavity of a patient from a point of view of a surgical instrument residing in the cavity of the patient. The surgical instrument navigation system includes: a surgical instrument; an imaging device which is operable to capture scan data representative of an internal region of interest within a given patient; a tracking subsystem that employs electro-magnetic sensing to capture in real-time position data indicative of the position of the surgical instrument; a data processor which is operable to render a volumetric, perspective image of the internal region of interest from a point of view of the surgical instrument; and a display which is operable to display the volumetric perspective image of the patient.
    Type: Application
    Filed: August 22, 2011
    Publication date: March 8, 2012
    Inventors: Troy Holsing, Mark Hunter
  • Publication number: 20110052008
    Abstract: Apparatus and methods are disclosed for the calibration of a tracked imaging probe for use in image-guided surgical systems. The invention uses actual image data collected from an easily constructed calibration jig to provide data for the calibration algorithm. The calibration algorithm analytically develops a geometric relationship between the probe and the image so objects appearing in the collected image can be accurately described with reference to the probe. The invention can be used with either two or three dimensional image data-sets. The invention also has the ability to automatically determine the image scale factor when two dimensional data-sets are used.
    Type: Application
    Filed: November 8, 2010
    Publication date: March 3, 2011
    Applicant: Medtronic Navigation, Inc.
    Inventors: Troy Holsing, Gordon Goodchild
  • Patent number: 7831082
    Abstract: Apparatus and methods are disclosed for the calibration of a tracked imaging probe for use in image-guided surgical systems. The invention uses actual image data collected from an easily constructed calibration jig to provide data for the calibration algorithm. The calibration algorithm analytically develops a geometric relationship between the probe and the image so objects appearing in the collected image can be accurately described with reference to the probe. The invention can be used with either two or three dimensional image data-sets. The invention also has the ability to automatically determine the image scale factor when two dimensional data-sets are used.
    Type: Grant
    Filed: June 5, 2006
    Date of Patent: November 9, 2010
    Assignee: Medtronic Navigation, Inc.
    Inventors: Troy Holsing, Gordon Goodchild
  • Publication number: 20070066881
    Abstract: A method includes receiving during a first time interval image data associated with an image of a dynamic body. The image data includes an indication of the positions of a first marker and a second marker on a garment coupled to the dynamic body. The first marker and second marker are each coupled to the garment at a first and second locations, respectively. A distance is determined between the position of the first marker and the second marker. During a second time interval after the first time interval, data associated with a position of a first and second localization element that are each coupled to the garment is received. A distance between the first and second localization elements is determined. A difference is calculated between the distance between the first marker and the second marker and the distance between the first localization element and the second localization element.
    Type: Application
    Filed: September 13, 2005
    Publication date: March 22, 2007
    Inventors: Jerome Edwards, Evan Austill, Torsten Lyon, Troy Holsing
  • Publication number: 20070060799
    Abstract: A method includes receiving during a first time interval associated with a path of motion of a dynamic body, image data associated with a plurality of images of the dynamic body. The plurality of images include an indication of a position of a first marker coupled to a garment at a first location, and a position of a second marker coupled to the garment at a second location. The garment is coupled to the dynamic body. During a second time interval, an image from the plurality of images is automatically identified that includes a position of the first marker that is substantially the same as a position of a first localization element relative to the dynamic body and a position of the second marker that is substantially the same as a position of the second localization element relative to the dynamic body.
    Type: Application
    Filed: April 25, 2006
    Publication date: March 15, 2007
    Inventors: Torsten Lyon, Troy Holsing, Jerome Edwards, Christopher Lee, Evan Austill
  • Publication number: 20060262961
    Abstract: Apparatus and methods are disclosed for the calibration of a tracked imaging probe for use in image-guided surgical systems. The invention uses actual image data collected from an easily constructed calibration jig to provide data for the calibration algorithm. The calibration algorithm analytically develops a geometric relationship between the probe and the image so objects appearing in the collected image can be accurately described with reference to the probe. The invention can be used with either two or three dimensional image data-sets. The invention also has the ability to automatically determine the image scale factor when two dimensional data-sets are used.
    Type: Application
    Filed: June 5, 2006
    Publication date: November 23, 2006
    Inventors: Troy Holsing, Gordon Goodchild
  • Patent number: 7085400
    Abstract: Apparatus and methods are disclosed for the calibration of a tracked imaging probe for use in image-guided surgical systems. The invention uses actual image data collected from an easily constructed calibration jig to provide data for the calibration algorithm. The calibration algorithm analytically develops a geometric relationship between the probe and the image so objects appearing in the collected image can be accurately described with reference to the probe. The invention can be used with either two or three dimensional image data-sets. The invention also has the ability to automatically determine the image scale factor when two dimensional data-sets are used.
    Type: Grant
    Filed: June 14, 2000
    Date of Patent: August 1, 2006
    Assignee: Surgical Navigation Technologies, Inc.
    Inventors: Troy Holsing, Gordon Goodchild
  • Patent number: 6968224
    Abstract: A surgical instrument navigation system comprises an ultrasound machine and a computer coupled to the ultrasound machine. A memory is coupled to the computer and includes computer instructions that when executed by the computer cause the computer to generate an icon representing the surgical instrument with a tip and the surgical instrument's trajectory and to overlay the icon on a real-time ultrasound image having an image plane, such that when the surgical instrument crosses the ultrasound image plane the format of the surgical instrument's trajectory is changed to represent the surgical instrument's crossing of the ultrasound image's plane. The system also comprises a localizer coupled to the ultrasound machine, and a display coupled to the computer for displaying the generated icon superimposed on the real-time image.
    Type: Grant
    Filed: September 19, 2003
    Date of Patent: November 22, 2005
    Assignee: Surgical Navigation Technologies, Inc.
    Inventors: Paul Kessman, Troy Holsing, Jason Trobaugh
  • Publication number: 20040059217
    Abstract: A surgical instrument navigation system comprises an ultrasound machine and a computer coupled to the ultrasound machine. A memory is coupled to the computer and includes computer instructions that when executed by the computer cause the computer to generate an icon representing the surgical instrument with a tip and the surgical instrument's trajectory and to overlay the icon on a real-time ultrasound image having an image plane, such that when the surgical instrument crosses the ultrasound image plane the format of the surgical instrument's trajectory is changed to represent the surgical instrument's crossing of the ultrasound image's plane. The system also comprises a localizer coupled to the ultrasound machine, and a display coupled to the computer for displaying the generated icon superimposed on the real-time image.
    Type: Application
    Filed: September 19, 2003
    Publication date: March 25, 2004
    Inventors: Paul Kessman, Troy Holsing, Jason Trobaugh
  • Patent number: 6669635
    Abstract: A surgical instrument navigation system comprises an ultrasound machine and a computer coupled to the ultrasound machine. A memory is coupled to the computer and includes computer instructions that when executed by the computer cause the computer to generate an icon representing the surgical instrument with a tip and the surgical instrument's trajectory and to overlay the icon on a real-time ultrasound image having an image plane, such that when the surgical instrument crosses the ultrasound image plane the format of the surgical instrument's trajectory is changed to represent the surgical instrument's crossing of the ultrasound image's plane. The system also comprises a localizer coupled to the ultrasound machine, and a display coupled to the computer for displaying the generated icon superimposed on the real-time image.
    Type: Grant
    Filed: January 14, 2002
    Date of Patent: December 30, 2003
    Assignee: Surgical Navigation Technologies, Inc.
    Inventors: Paul Kessman, Troy Holsing, Jason Trobaugh
  • Publication number: 20020156375
    Abstract: A surgical instrument navigation system comprises an ultrasound machine and a computer coupled to the ultrasound machine. A memory is coupled to the computer and includes computer instructions that when executed by the computer cause the computer to generate an icon representing the surgical instrument with a tip and the surgical instrument's trajectory and to overlay the icon on a real-time ultrasound image having an image plane, such that when the surgical instrument crosses the ultrasound image plane the format of the surgical instrument's trajectory is changed to represent the surgical instrument's crossing of the ultrasound image's plane. The system also comprises a localizer coupled to the ultrasound machine, and a display coupled to the computer for displaying the generated icon superimposed on the real-time image.
    Type: Application
    Filed: January 14, 2002
    Publication date: October 24, 2002
    Inventors: Paul Kessman, Troy Holsing, Jason Trobaugh
  • Patent number: 6379302
    Abstract: A surgical instrument navigation system comprises an ultrasound machine and a computer coupled to the ultrasound machine. A memory is coupled to the computer and includes computer instructions that when executed by the computer cause the computer to generate an icon representing the surgical instrument with a tip and the surgical instrument's trajectory and to overlay the icon on a real-time ultrasound image having an image plane, such that when the surgical instrument crosses the ultrasound image plane the format of the surgical instrument's trajectory is changed to represent the surgical instrument's crossing of the ultrasound image's plane. The system also comprises a localizer coupled to the ultrasound machine, and a display coupled to the computer for displaying the generated icon superimposed on the real-time image.
    Type: Grant
    Filed: October 28, 1999
    Date of Patent: April 30, 2002
    Assignee: Surgical Navigation Technologies Inc.
    Inventors: Paul Kessman, Troy Holsing, Jason Trobaugh