Patents by Inventor True L. Rogers

True L. Rogers has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9061027
    Abstract: Inhalable compositions are described. The inhalable compositions comprise one or more respirable aggregates, the respirable aggregates comprising one or more poorly water soluble active agents, wherein at least one of the active agents reaches a maximum lung concentration (Cmax) of at least about 0.25 ?g/gram of lung tissue and remains at such concentration for a period of at least one hour after being delivered to the lung. Methods for making such compositions and methods for using such compositions are also disclosed.
    Type: Grant
    Filed: August 26, 2005
    Date of Patent: June 23, 2015
    Assignee: Board of Regents, the University of Texas System
    Inventors: James E. Hitt, True L. Rogers, Ian B. Gillespie, Brian D. Scherzer, Paula C. Garcia, Nicholas S. Beck, Christopher J. Tucker, Timothy J. Young, David A. Hayes, Robert O. Williams, III, Keith P. Johnston, Jason T. McConville, Jay I. Peters, Robert Talbert, David Burgess
  • Patent number: 9044391
    Abstract: The present invention includes compositions and methods for making and using a rapid dissolving, high potency, substantially amorphous nanostructured aggregate for pulmonary delivery of tacrolimus and a stabilizer matrix comprising, optionally, a polymeric or non-polymeric surfactant, a polymeric or non-polymeric saccharide or both, wherein the aggregate comprises a surface area greater than 5 m2/g as measured by BET analysis and exhibiting supersaturation for at least 0.5 hours when 11-15-times the aqueous crystalline solubility of tacrolimus is added to simulated lung fluid.
    Type: Grant
    Filed: January 10, 2008
    Date of Patent: June 2, 2015
    Assignee: Board of Regents, the University of Texas System
    Inventors: Robert O. Williams, Keith P. Johnston, Prapasri Sinswat, Jason T. McConville, Robert Talbert, Jay I. Peters, Alan B. Watts, True L. Rogers
  • Publication number: 20150140091
    Abstract: A solid dispersion comprising at least one active ingredient in at least one hydroxyalkyl methylcellulose having a DS of from 1.0 to 2.7 and an MS of from 0.40 to 1.30, wherein DS is the degree of substitution of methoxyl groups and MS is the molar substitution of hydroxyalkoxyl groups, can be produced by extrusion or spray-drying.
    Type: Application
    Filed: July 12, 2013
    Publication date: May 21, 2015
    Applicant: Dow Global Technologies LLC
    Inventors: Nicholas S. Grasman, Steven J. Guillaudeu, Mark J. Hall, Uma Shrestha, Maureen L. Rose, William W. Porter, III, Wesley J. Spaulding, Kevin P. O'donnell, True L. Rogers
  • Publication number: 20150072858
    Abstract: The present disclosure is directed to cellulose ether compositions for film-forming coating applications. A coating composition is provided which contains an aqueous solution of either a very low viscosity cellulose ether or a low-hydroxypropyl cellulose ether, the coating composition having low color. The low viscosity of the cellulose ether component enables the coating composition to contain a high concentration of cellulose ether. Provision of these high concentration cellulose ether coating solutions improves production efficiency by reducing the time required to coat a substrate.
    Type: Application
    Filed: November 13, 2014
    Publication date: March 12, 2015
    Inventors: True L. Rogers, Debora L. Holbrook, Karen A. Coppens, Robert L. Schmitt
  • Publication number: 20150057356
    Abstract: A melt-extruded polymer composition comprising a) at least one cellulose ether, b) one or more active ingredients and c) one or more optional additives, wherein said at least one cellulose ether has an MS (hydroxyalkyl) of 0.05 to 0.55 and hydroxyl groups of anhydroglucose units are substituted with methyl groups such that [s23/s26?0.2*MS(hydroxyalkyl)] is 0.32 or less, wherein s23 is the molar fraction of anhydroglucose units wherein only the two hydroxyl groups in the 2- and 3-positions of the anhydroglucose unit are substituted with a methyl group and wherein s26 is the molar fraction of anhydroglucose units wherein only the two hydroxyl groups in the 2- and 6-positions of the anhydroglucose unit are substituted with a methyl group.
    Type: Application
    Filed: April 8, 2013
    Publication date: February 26, 2015
    Inventors: Nicholas S. Grasman, True L. Rogers, Oliver Petermann, Meinolf Brackhagen, Roland Adden
  • Patent number: 8920553
    Abstract: The present disclosure is directed to cellulose ether compositions for film-forming coating applications. A coating composition is provided which contains an aqueous solution of either a very low viscosity cellulose ether or a low-hydroxypropyl cellulose ether, the coating composition having low color, The low viscosity of the cellulose ether component enables the coating composition to contain a high concentration of cellulose ether. Provision of these high concentration cellulose ether coating solutions improves production efficiency by reducing the time required to coat a substrate.
    Type: Grant
    Filed: November 5, 2008
    Date of Patent: December 30, 2014
    Assignee: Dow Global Technologies LLC
    Inventors: True L. Rogers, Debora L. Holbrook, Karen A. Coppens, Robert L. Schmitt
  • Publication number: 20100275814
    Abstract: The present disclosure Is directed to cellulose ether compositions for film-forming coating applications. A coating composition is provided which contains an aqueous solution of either a very low viscosity cellulose ether or a low-hydroxypropyl cellulose ether, the coating composition having low color, The low viscosity of the cellulose ether component enables the coating composition to contain a high concentration of cellulose ether. Provision of these high concentration cellulose ether coating solutions improves production efficiency by reducing the time required to coat a substrate.
    Type: Application
    Filed: November 5, 2008
    Publication date: November 4, 2010
    Inventors: True L. Rogers, Debora L. Holbrook, Karen A. Coppens, Robert L. Schmitt
  • Publication number: 20100183721
    Abstract: The present invention includes compositions and methods for making and using a rapid dissolving, high potency, substantially amorphous nanostructured aggregate for pulmonary delivery of tacrolimus and a stabilizer matrix comprising, optionally, a polymeric or non-polymeric surfactant, a polymeric or non-polymeric saccharide or both, wherein the aggregate comprises a surface area greater than 5 m2/g as measured by BET analysis and exhibiting supersaturation for at least 0.5 hours when 11-15-times the aqueous crystalline solubility of tacrolimus is added to simulated lung fluid.
    Type: Application
    Filed: January 10, 2008
    Publication date: July 22, 2010
    Applicant: Board of Regents, The University of Texas System
    Inventors: Robert O. Williams, Keith P. Johnston, Prapasri Sinswat, Jason T. McConville, Robert Talbert, Jay I. Peters, Alan B. Watts, True L. Rogers
  • Patent number: 6862890
    Abstract: The present invention provides a system and a method for the production of microparticles and nanoparticles of materials that can be dissolved. The system and method of the present invention provide quicker freezing times, which in turn produces a more uniform distribution of particle sizes, smaller particles, particles with increased porosity and a more intimate mixing of the particle components. The system and method of the present invention also produce particles with greater surface area than conventional methods. One form of the present invention provides a method for the preparation of particles. An effective ingredient is mixed with water, one or more solvents, or a combination thereof, and the resulting mixture is sprayed through an insulating nozzle located at or below the level of a cryogenic liquid. The spray generates frozen particles.
    Type: Grant
    Filed: January 30, 2002
    Date of Patent: March 8, 2005
    Assignee: Board of Regents, University of Texas System
    Inventors: Robert O. Williams, III, Keith P. Johnston, Timothy J. Young, True L. Rogers, Melisa K. Barron, Zhongshui Yu, Jiahui Hu
  • Publication number: 20040022861
    Abstract: The present invention provides a system and a method for the production of microparticles and nanoparticles of materials that can be dissolved. The system and method of the present invention provide quicker freezing times, which in turn produces a more uniform distribution of particle sizes, smaller particles, particles with increased porosity and a more intimate mixing of the particle components. The system and method of the present invention also produce particles with greater surface area than conventional methods. One form of the present invention provides a method for the preparation of particles. An effective ingredient is mixed with water, one or more solvents, or a combination thereof, and the resulting mixture is sprayed through an insulating nozzle located at or below the level of a cryogenic liquid. The spray generates frozen particles.
    Type: Application
    Filed: October 18, 2002
    Publication date: February 5, 2004
    Inventors: Robert O. Williams, Keith P. Johnston, Timothy J. Young, True L. Rogers, Melisa K. Barron, Zhongshui Yu, Jiahui Hu
  • Publication number: 20030041602
    Abstract: The present invention provides a system and a method for the production of microparticles and nanoparticles of materials that can be dissolved. The system and method of the present invention provide quicker freezing times, which in turn produces a more uniform distribution of particle sizes, smaller particles, particles with increased porosity and a more intimate mixing of the particle components. The system and method of the present invention also produce particles with greater surface area than conventional methods. One form of the present invention provides a method for the preparation of particles. An effective ingredient is mixed with water, one or more solvents, or a combination thereof, and the resulting mixture is sprayed through an insulating nozzle located at or below the level of a cryogenic liquid. The spray generates frozen particles.
    Type: Application
    Filed: January 30, 2002
    Publication date: March 6, 2003
    Inventors: Robert O. Williams, Keith P. Johnston, Timothy J. Young, True L. Rogers, Melisa K. Barron, Zhongshui Yu, Jiahui Hu