Patents by Inventor Tsai-Wen Sung

Tsai-Wen Sung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240081941
    Abstract: Ultrasound imaging is a non-invasive, non-radioactive, and low cost technology for diagnosis and identification of implantable medical devices in real time. Developing new ultrasound activated coatings is important to broaden the utility of in vivo marking by ultrasound imaging. Ultrasound responsive macro-phase segregated micro-composite thin films were developed to be coated on medical devices composed of multiple materials and with multiple shapes and varying surface area. The macro-phase segregated films having silica micro-shells in polycyanoacrylate produces strong color Doppler signals with the use of a standard clinical ultrasound transducer. Electron microscopy showed a macro-phase separation during slow curing of the cyanoacrylate adhesive, as air-filled silica micro-shells were driven to the surface of the film. The air sealed in the hollow space of the silica shells acted as an ultrasound contrast agent and echo decorrelation of air exposed to ultrasound waves produces color Doppler signals.
    Type: Application
    Filed: November 13, 2023
    Publication date: March 14, 2024
    Inventors: Jian Yang, Alexander Liberman, James Wang, Christopher Barback, Natalie Mendez, Erin Ward, Sarah Blair, Andrew C. Kummel, Tsai-Wen Sung, William C. Trogler
  • Patent number: 11813123
    Abstract: Ultrasound imaging is a non-invasive, non-radioactive, and low cost technology for diagnosis and identification of implantable medical devices in real time. Developing new ultrasound activated coatings is important to broaden the utility of in vivo marking by ultrasound imaging. Ultrasound responsive macro-phase segregated micro-composite thin films were developed to be coated on medical devices composed of multiple materials and with multiple shapes and varying surface area. The macro-phase segregated in films having silica micro-shells in polycyanoacrylate produces strong color Doppler signals with the use of a standard clinical ultrasound transducer. Electron microscopy showed a macro-phase separation during slow curing of the cyanoacrylate adhesive, as air-filled silica micro-shells were driven to the surface of the film. The air sealed in the hollow space of the silica shells acted as an ultrasound contrast agent and echo decorrelation of air exposed to ultrasound waves produces color Doppler signals.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: November 14, 2023
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Jian Yang, Alexander Liberman, James Wang, Christopher Barback, Natalie Mendez, Erin Ward, Sarah Blair, Andrew C. Kummel, Tsai-Wen Sung, William C. Trogler
  • Patent number: 11462413
    Abstract: Apparatus, systems, and methods for conducting an etch removal process on a workpiece are provided. The method can include generating a plasma from a deposition process gas in a plasma chamber using a plasma source to deposit a passivation layer on certain layers of a high aspect ratio structure. The method can include generating a plasma from an etch process gas in a plasma chamber using a plasma source to remove certain layers from the high aspect ratio structure. The method can include removing silicon nitride layers at a faster etch rate than silicon dioxide layers on the high aspect ratio structure.
    Type: Grant
    Filed: July 16, 2020
    Date of Patent: October 4, 2022
    Assignees: BEIJING E-TOWN SEMICONDUCTOR TECHNOLOGY CO., LTD., MATTSON TECHNOLOGY, INC
    Inventors: Shanyu Wang, Chun Yan, Hua Chung, Michael X. Yang, Tsai Wen Sung, Qi Zhang
  • Patent number: 11387115
    Abstract: Apparatus, systems, and methods for conducting a silicon containing material removal process on a workpiece are provided. In one example implementation, the method can include generating species from a process gas in a first chamber using an inductive coupling element. The method can include introducing a fluorine containing gas with the species to create a mixture. The mixture can include exposing a silicon structure of the workpiece to the mixture to remove at least a portion of the silicon structure.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: July 12, 2022
    Assignees: BEIJING E-TOWN SEMICONDUCTOR TECHNOLOGY, CO., LTD, MATTSON TECHNOLOGY, INC.
    Inventors: Chun Yan, Tsai Wen Sung, Sio On Lo, Hua Chung, Michael X. Yang
  • Patent number: 11276560
    Abstract: Systems and methods for processing a workpiece are provided. In one example, a method includes placing a workpiece on a workpiece support in a processing chamber. The workpiece has at least one material layer and at least one structure thereon. The method includes admitting a process gas into a plasma chamber, generating one or more species from the process gas, and filtering the one or more species to create a filtered mixture. The method further includes providing RF power to a bias electrode to generate a second mixture and exposing the workpiece to the second mixture to etch a least a portion of the material layer and to form a film on at least a portion of the material layer.
    Type: Grant
    Filed: August 25, 2020
    Date of Patent: March 15, 2022
    Assignees: Mattson Technology, Inc., Beijing E-Town Semiconductor Technology Co., Ltd.
    Inventors: Tsai Wen Sung, Chun Yan, Michael X. Yang
  • Patent number: 11195718
    Abstract: Systems and methods for processing a workpiece are provided. In one example, a method includes placing a workpiece on a workpiece support in a processing chamber. The method includes performing a spacer treatment process to expose the workpiece to species generated from a first process gas in a first plasma to perform a spacer treatment process on a spacer layer on the workpiece. The first plasma can be generated in the processing chamber. After performing the spacer treatment process, the method can include performing a spacer etch process to expose the workpiece to neutral radicals generated from a second process gas in a second plasma to etch at least a portion of the spacer layer on the workpiece. The second plasma can be generated in a plasma chamber that is remote from the processing chamber.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: December 7, 2021
    Assignees: Beijing E-Town Semiconductor Technology Co., Ltd., Mattson Technology, Inc.
    Inventors: Tsai Wen Sung, Chun Yan, Hua Chung, Michael X. Yang, Dixit V. Desai, Peter J. Lembesis
  • Publication number: 20210066047
    Abstract: Systems and methods for processing a workpiece are provided. In one example, a method includes placing a workpiece on a workpiece support in a processing chamber. The workpiece has at least one material layer and at least one structure thereon. The method includes admitting a process gas into a plasma chamber, generating one or more species from the process gas, and filtering the one or more species to create a filtered mixture. The method further includes providing RF power to a bias electrode to generate a second mixture and exposing the workpiece to the second mixture to etch a least a portion of the material layer and to form a film on at least a portion of the material layer.
    Type: Application
    Filed: August 25, 2020
    Publication date: March 4, 2021
    Inventors: Tsai Wen Sung, Chun Yan, Michael X. Yang
  • Publication number: 20210020445
    Abstract: Apparatus, systems, and methods for conducting an etch removal process on a workpiece are provided. The method can include generating a plasma from a deposition process gas in a plasma chamber using a plasma source to deposit a passivation layer on certain layers of a high aspect ratio structure. The method can include generating a plasma from an etch process gas in a plasma chamber using a plasma source to remove certain layers from the high aspect ratio structure. The method can include removing silicon nitride layers at a faster etch rate than silicon dioxide layers on the high aspect ratio structure.
    Type: Application
    Filed: July 16, 2020
    Publication date: January 21, 2021
    Inventors: Shanyu Wang, Chun Yan, Hua Chung, Michael X. Yang, Tsai Wen Sung, Qi Zhang
  • Publication number: 20210005456
    Abstract: Systems and methods for processing a workpiece are provided. In one example, a method includes placing a workpiece on a workpiece support in a processing chamber. The method includes performing a spacer treatment process to expose the workpiece to species generated from a first process gas in a first plasma to perform a spacer treatment process on a spacer layer on the workpiece. The first plasma can be generated in the processing chamber. After performing the spacer treatment process, the method can include performing a spacer etch process to expose the workpiece to neutral radicals generated from a second process gas in a second plasma to etch at least a portion of the spacer layer on the workpiece. The second plasma can be generated in a plasma chamber that is remote from the processing chamber.
    Type: Application
    Filed: June 30, 2020
    Publication date: January 7, 2021
    Inventors: Tsai Wen Sung, Chun Yan, Hua Chung, Michael X. Yang, Dixit V. Desai, Peter J. Lembesis
  • Publication number: 20200203182
    Abstract: Apparatus, systems, and methods for conducting a silicon containing material removal process on a workpiece are provided. In one example implementation, the method can include generating species from a process gas in a first chamber using an inductive coupling element. The method can include introducing a fluorine containing gas with the species to create a mixture. The mixture can include exposing a silicon structure of the workpiece to the mixture to remove at least a portion of the silicon structure.
    Type: Application
    Filed: December 17, 2019
    Publication date: June 25, 2020
    Inventors: Chun Yan, Tsai Wen Sung, Sio On Lo, Hua Chung, Michael X. Yang
  • Publication number: 20190192253
    Abstract: Ultrasound imaging is a non-invasive, non-radioactive, and low cost technology for diagnosis and identification of implantable medical devices in real time. Developing new ultrasound activated coatings is important to broaden the utility of in vivo marking by ultrasound imaging. Ultrasound responsive macro-phase segregated micro-composite thin films were developed to be coated on medical devices composed of multiple materials and with multiple shapes and varying surface area. The macro-phase segregated in films having silica micro-shells in polycyanoacrylate produces strong color Doppler signals with the use of a standard clinical ultrasound transducer. Electron microscopy showed a macro-phase separation during slow curing of the cyanoacrylate adhesive, as air-filled silica micro-shells were driven to the surface of the film. The air sealed in the hollow space of the silica shells acted as an ultrasound contrast agent and echo decorrelation of air exposed to ultrasound waves produces color Doppler signals.
    Type: Application
    Filed: August 31, 2017
    Publication date: June 27, 2019
    Applicant: The Regents of the University of California
    Inventors: Jian Yang, Alexander Liberman, James Wang, Christopher Barback, Natalie Mendez, Erin Ward, Sarah Blair, Andrew C. Kummel, Tsai-Wen Sung, William C. Trogler