Patents by Inventor Tse-Wei Lu

Tse-Wei Lu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230323564
    Abstract: Nitrogen-doped CZ silicon crystal ingots and wafers sliced therefrom are disclosed that provide for post epitaxial thermally treated wafers having oxygen precipitate density and size that are substantially uniformly distributed radially and exhibit the lack of a significant edge effect. Methods for producing such CZ silicon crystal ingots are also provided by controlling the pull rate from molten silicon, the temperature gradient and the nitrogen concentration. Methods for simulating the radial bulk micro defect size distribution, radial bulk micro defect density distribution and oxygen precipitation density distribution of post epitaxial thermally treated wafers sliced from nitrogen-doped CZ silicon crystals are also provided.
    Type: Application
    Filed: June 14, 2023
    Publication date: October 12, 2023
    Inventors: Zheng Lu, Gaurab Samanta, Tse-Wei Lu, Feng-Chien Tsai
  • Patent number: 11753741
    Abstract: Nitrogen-doped CZ silicon crystal ingots and wafers sliced therefrom are disclosed that provide for post epitaxial thermally treated wafers having oxygen precipitate density and size that are substantially uniformly distributed radially and exhibit the lack of a significant edge effect. Methods for producing such CZ silicon crystal ingots are also provided by controlling the pull rate from molten silicon, the temperature gradient and the nitrogen concentration. Methods for simulating the radial bulk micro defect size distribution, radial bulk micro defect density distribution and oxygen precipitation density distribution of post epitaxial thermally treated wafers sliced from nitrogen-doped CZ silicon crystals are also provided.
    Type: Grant
    Filed: March 12, 2021
    Date of Patent: September 12, 2023
    Assignee: GlobalWafers Co., Ltd.
    Inventors: Zheng Lu, Gaurab Samanta, Tse-Wei Lu, Feng-Chien Tsai
  • Patent number: 11111602
    Abstract: Nitrogen-doped CZ silicon crystal ingots and wafers sliced therefrom are disclosed that provide for post epitaxial thermally treated wafers having oxygen precipitate density and size that are substantially uniformly distributed radially and exhibit the lack of a significant edge effect. Methods for producing such CZ silicon crystal ingots are also provided by controlling the pull rate from molten silicon, the temperature gradient and the nitrogen concentration. Methods for simulating the radial bulk micro defect size distribution, radial bulk micro defect density distribution and oxygen precipitation density distribution of post epitaxial thermally treated wafers sliced from nitrogen-doped CZ silicon crystals are also provided.
    Type: Grant
    Filed: July 29, 2015
    Date of Patent: September 7, 2021
    Assignee: GlobalWafers Co., Ltd.
    Inventors: Zheng Lu, Gaurab Samanta, Tse-Wei Lu, Feng-Chien Tsai
  • Publication number: 20210198805
    Abstract: Nitrogen-doped CZ silicon crystal ingots and wafers sliced therefrom are disclosed that provide for post epitaxial thermally treated wafers having oxygen precipitate density and size that are substantially uniformly distributed radially and exhibit the lack of a significant edge effect. Methods for producing such CZ silicon crystal ingots are also provided by controlling the pull rate from molten silicon, the temperature gradient and the nitrogen concentration. Methods for simulating the radial bulk micro defect size distribution, radial bulk micro defect density distribution and oxygen precipitation density distribution of post epitaxial thermally treated wafers sliced from nitrogen-doped CZ silicon crystals are also provided.
    Type: Application
    Filed: March 12, 2021
    Publication date: July 1, 2021
    Inventors: Zheng Lu, Gaurab Samanta, Tse-Wei Lu, Feng-Chien Tsai
  • Patent number: 10988859
    Abstract: Nitrogen-doped CZ silicon crystal ingots and wafers sliced therefrom are disclosed that provide for post epitaxial thermally treated wafers having oxygen precipitate density and size that are substantially uniformly distributed radially and exhibit the lack of a significant edge effect. Methods for producing such CZ silicon crystal ingots are also provided by controlling the pull rate from molten silicon, the temperature gradient and the nitrogen concentration. Methods for simulating the radial bulk micro defect size distribution, radial bulk micro defect density distribution and oxygen precipitation density distribution of post epitaxial thermally treated wafers sliced from nitrogen-doped CZ silicon crystals are also provided.
    Type: Grant
    Filed: May 18, 2018
    Date of Patent: April 27, 2021
    Assignee: GlobalWafers Co., Ltd.
    Inventors: Zheng Lu, Gaurab Samanta, Tse-Wei Lu, Feng-Chien Tsai
  • Publication number: 20180266016
    Abstract: Nitrogen-doped CZ silicon crystal ingots and wafers sliced therefrom are disclosed that provide for post epitaxial thermally treated wafers having oxygen precipitate density and size that are substantially uniformly distributed radially and exhibit the lack of a significant edge effect. Methods for producing such CZ silicon crystal ingots are also provided by controlling the pull rate from molten silicon, the temperature gradient and the nitrogen concentration. Methods for simulating the radial bulk micro defect size distribution, radial bulk micro defect density distribution and oxygen precipitation density distribution of post epitaxial thermally treated wafers sliced from nitrogen-doped CZ silicon crystals are also provided.
    Type: Application
    Filed: May 18, 2018
    Publication date: September 20, 2018
    Inventors: Zheng Lu, Gaurab Samanta, Tse-Wei Lu, Feng-Chien Tsai
  • Publication number: 20180266015
    Abstract: Nitrogen-doped CZ silicon crystal ingots and wafers sliced therefrom are disclosed that provide for post epitaxial thermally treated wafers having oxygen precipitate density and size that are substantially uniformly distributed radially and exhibit the lack of a significant edge effect. Methods for producing such CZ silicon crystal ingots are also provided by controlling the pull rate from molten silicon, the temperature gradient and the nitrogen concentration. Methods for simulating the radial bulk micro defect size distribution, radial bulk micro defect density distribution and oxygen precipitation density distribution of post epitaxial thermally treated wafers sliced from nitrogen-doped CZ silicon crystals are also provided.
    Type: Application
    Filed: May 18, 2018
    Publication date: September 20, 2018
    Inventors: Zheng Lu, Gaurab Samanta, Tse-Wei Lu, Feng-Chien Tsai
  • Publication number: 20160032491
    Abstract: Nitrogen-doped CZ silicon crystal ingots and wafers sliced therefrom are disclosed that provide for post epitaxial thermally treated wafers having oxygen precipitate density and size that are substantially uniformly distributed radially and exhibit the lack of a significant edge effect. Methods for producing such CZ silicon crystal ingots are also provided by controlling the pull rate from molten silicon, the temperature gradient and the nitrogen concentration. Methods for simulating the radial bulk micro defect size distribution, radial bulk micro defect density distribution and oxygen precipitation density distribution of post epitaxial thermally treated wafers sliced from nitrogen-doped CZ silicon crystals are also provided.
    Type: Application
    Filed: July 29, 2015
    Publication date: February 4, 2016
    Inventors: Zheng Lu, Gaurab Samanta, Tse-Wei Lu, Feng-Chien Tsai