Patents by Inventor Tseng Chin Lo

Tseng Chin Lo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230369309
    Abstract: Provided is a method for inserting a pre-designed filler cell, as a replacement to a standard filler cell, including identifying at least one gap among a plurality of functional cells. In some embodiments, a pre-designed filler cell is inserted within the at least one gap. By way of example, the pre-designed filler cell includes a layout design having a pattern associated with a particular failure mode. In various embodiments, a layer is patterned on a semiconductor substrate such that the pattern of the layout design is transferred to the layer on the semiconductor substrate. Thereafter, the patterned layer is inspected using an electron beam (e-beam) inspection process.
    Type: Application
    Filed: July 24, 2023
    Publication date: November 16, 2023
    Inventors: Tseng Chin LO, Molly CHANG, Ya-Wen TSENG, Chih-Ting SUN, Zi-Kuan LI, Bo-Sen CHANG, Geng-He LIN
  • Publication number: 20230359131
    Abstract: Integrated circuits and methods for overlap measure are provided. In an embodiment, an integrated circuit includes a plurality of functional cells including at least one gap disposed adjacent to at least one functional cell of the plurality of functional cells and a first overlay test pattern cell disposed within the at least one gap, wherein the first overlay test pattern cell includes a first number of patterns disposed along a first direction at a first pitch. The first pitch is smaller than a smallest wavelength on a full spectrum of humanly visible lights.
    Type: Application
    Filed: July 24, 2023
    Publication date: November 9, 2023
    Inventors: Tseng Chin Lo, Bo-Sen Chang, Yueh-Yi Chen, Chih-Ting Sun, Ying-Jung Chen, Kung-Cheng Lin, Meng Lin Chang
  • Patent number: 11776948
    Abstract: Provided is a method for inserting a pre-designed filler cell, as a replacement to a standard filler cell, including identifying at least one gap among a plurality of functional cells. In some embodiments, a pre-designed filler cell is inserted within the at least one gap. By way of example, the pre-designed filler cell includes a layout design having a pattern associated with a particular failure mode. In various embodiments, a layer is patterned on a semiconductor substrate such that the pattern of the layout design is transferred to the layer on the semiconductor substrate. Thereafter, the patterned layer is inspected using an electron beam (e-beam) inspection process.
    Type: Grant
    Filed: April 18, 2022
    Date of Patent: October 3, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Tseng Chin Lo, Molly Chang, Ya-Wen Tseng, Chih-Ting Sun, Zi-Kuan Li, Bo-Sen Chang, Geng-He Lin
  • Patent number: 11762302
    Abstract: Integrated circuits and methods for overlap measure are provided. In an embodiment, an integrated circuit includes a plurality of functional cells including at least one gap disposed adjacent to at least one functional cell of the plurality of functional cells and a first overlay test pattern cell disposed within the at least one gap, wherein the first overlay test pattern cell includes a first number of patterns disposed along a first direction at a first pitch. The first pitch is smaller than a smallest wavelength on a full spectrum of humanly visible lights.
    Type: Grant
    Filed: May 24, 2021
    Date of Patent: September 19, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Tseng Chin Lo, Bo-Sen Chang, Yueh-Yi Chen, Chih-Ting Sun, Ying-Jung Chen, Kung-Cheng Lin, Meng Lin Chang
  • Publication number: 20220246600
    Abstract: Provided is a method for inserting a pre-designed filler cell, as a replacement to a standard filler cell, including identifying at least one gap among a plurality of functional cells. In some embodiments, a pre-designed filler cell is inserted within the at least one gap. By way of example, the pre-designed filler cell includes a layout design having a pattern associated with a particular failure mode. In various embodiments, a layer is patterned on a semiconductor substrate such that the pattern of the layout design is transferred to the layer on the semiconductor substrate. Thereafter, the patterned layer is inspected using an electron beam (e-beam) inspection process.
    Type: Application
    Filed: April 18, 2022
    Publication date: August 4, 2022
    Inventors: Tseng Chin LO, Molly CHANG, Ya-Wen TSENG, Chih-Ting SUN, Zi-Kuan LI, Bo-Sen CHANG, Geng-He LIN
  • Patent number: 11309307
    Abstract: Provided is a method for inserting a pre-designed filler cell, as a replacement to a standard filler cell, including identifying at least one gap among a plurality of functional cells. In some embodiments, a pre-designed filler cell is inserted within the at least one gap. By way of example, the pre-designed filler cell includes a layout design having a pattern associated with a particular failure mode. In various embodiments, a layer is patterned on a semiconductor substrate such that the pattern of the layout design is transferred to the layer on the semiconductor substrate. Thereafter, the patterned layer is inspected using an electron beam (e-beam) inspection process.
    Type: Grant
    Filed: June 8, 2020
    Date of Patent: April 19, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Tseng Chin Lo, Molly Chang, Ya-Wen Tseng, Chih-Ting Sun, Zi-Kuan Li, Bo-Sen Chang, Geng-He Lin
  • Publication number: 20210278771
    Abstract: Integrated circuits and methods for overlap measure are provided. In an embodiment, an integrated circuit includes a plurality of functional cells including at least one gap disposed adjacent to at least one functional cell of the plurality of functional cells and a first overlay test pattern cell disposed within the at least one gap, wherein the first overlay test pattern cell includes a first number of patterns disposed along a first direction at a first pitch. The first pitch is smaller than a smallest wavelength on a full spectrum of humanly visible lights.
    Type: Application
    Filed: May 24, 2021
    Publication date: September 9, 2021
    Inventors: Tseng Chin Lo, Bo-Sen Chang, Yueh-Yi Chen, Chih-Ting Sun, Ying-Jung Chen, Kung-Cheng Lin, Meng Lin Chang
  • Patent number: 11016398
    Abstract: Integrated circuits and methods for overlap measure are provided. In an embodiment, an integrated circuit includes a plurality of functional cells including at least one gap disposed adjacent to at least one functional cell of the plurality of functional cells and a first overlay test pattern cell disposed within the at least one gap, wherein the first overlay test pattern cell includes a first number of patterns disposed along a first direction at a first pitch. The first pitch is smaller than a smallest wavelength on a full spectrum of humanly visible lights.
    Type: Grant
    Filed: June 14, 2018
    Date of Patent: May 25, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Tseng Chin Lo, Bo-Sen Chang, Yueh-Yi Chen, Chih-Ting Sun, Ying-Jung Chen, Kung-Cheng Lin, Meng Lin Chang
  • Publication number: 20200303366
    Abstract: Provided is a method for inserting a pre-designed filler cell, as a replacement to a standard filler cell, including identifying at least one gap among a plurality of functional cells. In some embodiments, a pre-designed filler cell is inserted within the at least one gap. By way of example, the pre-designed filler cell includes a layout design having a pattern associated with a particular failure mode. In various embodiments, a layer is patterned on a semiconductor substrate such that the pattern of the layout design is transferred to the layer on the semiconductor substrate. Thereafter, the patterned layer is inspected using an electron beam (e-beam) inspection process.
    Type: Application
    Filed: June 8, 2020
    Publication date: September 24, 2020
    Inventors: Tseng Chin LO, Molly CHANG, Ya-Wen TSENG, Chih-Ting SUN, Zi-Kuan LI, Bo-Sen CHANG, Geng-He LIN
  • Patent number: 10679980
    Abstract: Provided is a method for inserting a pre-designed filler cell, as a replacement to a standard filler cell, including identifying at least one gap among a plurality of functional cells. In some embodiments, a pre-designed filler cell is inserted within the at least one gap. By way of example, the pre-designed filler cell includes a layout design having a pattern associated with a particular failure mode. In various embodiments, a layer is patterned on a semiconductor substrate such that the pattern of the layout design is transferred to the layer on the semiconductor substrate. Thereafter, the patterned layer is inspected using an electron beam (e-beam) inspection process.
    Type: Grant
    Filed: August 14, 2019
    Date of Patent: June 9, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Tseng Chin Lo, Molly Chang, Ya-Wen Tseng, Chih-Ting Sun, Zi-Kuan Li, Bo-Sen Chang, Geng-He Lin
  • Publication number: 20190384185
    Abstract: Integrated circuits and methods for overlap measure are provided. In an embodiment, an integrated circuit includes a plurality of functional cells including at least one gap disposed adjacent to at least one functional cell of the plurality of functional cells and a first overlay test pattern cell disposed within the at least one gap, wherein the first overlay test pattern cell includes a first number of patterns disposed along a first direction at a first pitch. The first pitch is smaller than a smallest wavelength on a full spectrum of humanly visible lights.
    Type: Application
    Filed: June 14, 2018
    Publication date: December 19, 2019
    Inventors: Tseng Chin Lo, Bo-Sen Chang, Yueh-Yi Chen, Chih-Ting Sun, Ying-Jung Chen, Kung-Cheng Lin, Meng Lin Chang
  • Publication number: 20190371783
    Abstract: Provided is a method for inserting a pre-designed filler cell, as a replacement to a standard filler cell, including identifying at least one gap among a plurality of functional cells. In some embodiments, a pre-designed filler cell is inserted within the at least one gap. By way of example, the pre-designed filler cell includes a layout design having a pattern associated with a particular failure mode. In various embodiments, a layer is patterned on a semiconductor substrate such that the pattern of the layout design is transferred to the layer on the semiconductor substrate. Thereafter, the patterned layer is inspected using an electron beam (e-beam) inspection process.
    Type: Application
    Filed: August 14, 2019
    Publication date: December 5, 2019
    Inventors: Tseng Chin LO, Molly CHANG, Ya-Wen TSENG, Chih-Ting SUN, Zi-Kuan LI, Bo-Sen CHANG, Geng-He LIN
  • Patent number: 10388645
    Abstract: Provided is a method for inserting a pre-designed filler cell, as a replacement to a standard filler cell, including identifying at least one gap among a plurality of functional cells. In some embodiments, a pre-designed filler cell is inserted within the at least one gap. By way of example, the pre-designed filler cell includes a layout design having a pattern associated with a particular failure mode. In various embodiments, a layer is patterned on a semiconductor substrate such that the pattern of the layout design is transferred to the layer on the semiconductor substrate. Thereafter, the patterned layer is inspected using an electron beam (e-beam) inspection process.
    Type: Grant
    Filed: July 27, 2018
    Date of Patent: August 20, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tseng Chin Lo, Molly Chang, Ya-Wen Tseng, Chih-Ting Sun, Zi-Kuan Li, Bo-Sen Chang, Geng-He Lin
  • Patent number: 10283496
    Abstract: Provided is a method for inserting a pre-designed filler cell, as a replacement to a standard filler cell, including identifying at least one gap among a plurality of functional cells. In some embodiments, a pre-designed filler cell is inserted within the at least one gap. By way of example, the pre-designed filler cell includes a layout design having a pattern associated with a particular failure mode. In various embodiments, a layer is patterned on a semiconductor substrate such that the pattern of the layout design is transferred to the layer on the semiconductor substrate. Thereafter, the patterned layer is inspected using an electron beam (e-beam) inspection process.
    Type: Grant
    Filed: April 11, 2017
    Date of Patent: May 7, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tseng Chin Lo, Molly Chang, Ya-Wen Tseng, Chih-Ting Sun, Zi-Kuan Li, Bo-Sen Chang, Geng-He Lin
  • Patent number: 10161965
    Abstract: A system and method for aligning a probe, such as a wafer-level test probe, with wafer contacts is disclosed. An exemplary method includes receiving a wafer containing a plurality of alignment contacts and a probe card containing a plurality of probe points at a wafer test system. A historical offset correction is received. Based on the historical offset correct, an orientation value for the probe card relative to the wafer is determined. The probe card is aligned to the wafer using the orientation value in an attempt to bring a first probe point into contact with a first alignment contact. The connectivity of the first probe point and the first alignment contact is evaluated. An electrical test of the wafer is performed utilizing the aligned probe card, and the historical offset correction is updated based on the orientation value.
    Type: Grant
    Filed: March 16, 2015
    Date of Patent: December 25, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jui-Long Chen, Chien-Chih Liao, Chin-Hsiang Lin, Hui-yun Chao, Jong-I Mou, Tseng Chin Lo, Ta-Yung Lee
  • Publication number: 20180358348
    Abstract: Provided is a method for inserting a pre-designed filler cell, as a replacement to a standard filler cell, including identifying at least one gap among a plurality of functional cells. In some embodiments, a pre-designed filler cell is inserted within the at least one gap. By way of example, the pre-designed filler cell includes a layout design having a pattern associated with a particular failure mode. In various embodiments, a layer is patterned on a semiconductor substrate such that the pattern of the layout design is transferred to the layer on the semiconductor substrate. Thereafter, the patterned layer is inspected using an electron beam (e-beam) inspection process.
    Type: Application
    Filed: July 27, 2018
    Publication date: December 13, 2018
    Inventors: Tseng Chin LO, Molly CHANG, Ya-Wen TSENG, Chih-Ting SUN, Zi-Kuan LI, Bo-Sen CHANG, Geng-He LIN
  • Patent number: 9995770
    Abstract: One or more probe cards, wafer testers, and techniques for testing a semiconductor arrangement are provided. Testline arrangements are formed within scribe lines of a semiconductor wafer, in multiple directions, such as an x-direction and a y-direction. A wafer tester is configured to concurrently test the semiconductor arrangement in multiple directions using a multidirectional probe arrangement of a probe card. In some embodiments, a first pin arrangement of the multidirectional probe arrangement is mated with a first testline arrangement in a first direction, and a second pin arrangement of the multidirectional probe arrangement is mated with a second testline arrangement in a second direction. The wafer tester concurrently tests the semiconductor arrangement in multiple directions, such as in the first direction and the second direction, through the pin arrangements mated with the testline arrangements.
    Type: Grant
    Filed: March 21, 2014
    Date of Patent: June 12, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Tseng-Chin Lo, Huan Chi Tseng, Kuo-Chuan Chang, Yuan-Yao Chang, Chien-Chang Lee
  • Publication number: 20180006010
    Abstract: Provided is a method for inserting a pre-designed filler cell, as a replacement to a standard filler cell, including identifying at least one gap among a plurality of functional cells. In some embodiments, a pre-designed filler cell is inserted within the at least one gap. By way of example, the pre-designed filler cell includes a layout design having a pattern associated with a particular failure mode. In various embodiments, a layer is patterned on a semiconductor substrate such that the pattern of the layout design is transferred to the layer on the semiconductor substrate. Thereafter, the patterned layer is inspected using an electron beam (e-beam) inspection process.
    Type: Application
    Filed: April 11, 2017
    Publication date: January 4, 2018
    Inventors: Tseng Chin LO, Molly Chang, Ya-Wen TSENG, Chih-Ting SUN, Zi-Kuan LI, Bo-Sen CHANG, Geng-He LIN
  • Publication number: 20150268271
    Abstract: One or more probe cards, wafer testers, and techniques for testing a semiconductor arrangement are provided. Testline arrangements are formed within scribe lines of a semiconductor wafer, in multiple directions, such as an x-direction and a y-direction. A wafer tester is configured to concurrently test the semiconductor arrangement in multiple directions using a multidirectional probe arrangement of a probe card. In some embodiments, a first pin arrangement of the multidirectional probe arrangement is mated with a first testline arrangement in a first direction, and a second pin arrangement of the multidirectional probe arrangement is mated with a second testline arrangement in a second direction. The wafer tester concurrently tests the semiconductor arrangement in multiple directions, such as in the first direction and the second direction, through the pin arrangements mated with the testline arrangements.
    Type: Application
    Filed: March 21, 2014
    Publication date: September 24, 2015
    Applicant: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Tseng-Chin Lo, Huan Chi Tseng, Kuo-Chuan Chang, Yuan-Yao Chang, Chien-Chang Lee
  • Publication number: 20150192616
    Abstract: A system and method for aligning a probe, such as a wafer-level test probe, with wafer contacts is disclosed. An exemplary method includes receiving a wafer containing a plurality of alignment contacts and a probe card containing a plurality of probe points at a wafer test system. A historical offset correction is received. Based on the historical offset correct, an orientation value for the probe card relative to the wafer is determined. The probe card is aligned to the wafer using the orientation value in an attempt to bring a first probe point into contact with a first alignment contact. The connectivity of the first probe point and the first alignment contact is evaluated. An electrical test of the wafer is performed utilizing the aligned probe card, and the historical offset correction is updated based on the orientation value.
    Type: Application
    Filed: March 16, 2015
    Publication date: July 9, 2015
    Inventors: Jui-Long Chen, Chien-Chih Liao, Chin-Hsiang Lin, Hui-yun Chao, Jong-I Mou, Tseng Chin Lo, Ta-Yung Lee