Patents by Inventor Tsugio Kataoka

Tsugio Kataoka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9911546
    Abstract: A current collector which is suitable for discharging and charging at a large current density is provided. The present invention provides a current collector including a conductive substrate and a conductive resin layer provided on one side or both sides of the conductive substrate. The conductive resin layer contains a soluble nitrocellulose-based resin and a conductive material.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: March 6, 2018
    Assignees: UACJ CORPORATION, UACJ FOIL CORPORATION
    Inventors: Osamu Kato, Sohei Saito, Yukiou Honkawa, Mitsuyuki Wasamoto, Kenichi Kadowaki, Tsugio Kataoka
  • Patent number: 9786919
    Abstract: Current collector, an electrode structure, a non-aqueous electrolyte battery, and an electrical storage device having superior shut down function are provided. According to the present invention, a current collector having a resin layer on at least one side of a conductive substrate is provided. Here, thermoplastic resin particles substantially free of a conductive agent are dispersed in a thermosetting resin base material containing the conductive agent to structure the resin layer; a value of mass ratio given by (thermoplastic resin particles)/(conductive agent) is 0.3 to 1.5; and a value given by (average thickness of conductive agent)/(average thickness of thermoplastic resin particles) is 0.3 to 4.0.
    Type: Grant
    Filed: May 10, 2013
    Date of Patent: October 10, 2017
    Assignees: UACJ CORPORATION, UACJ FOIL CORPORATION
    Inventors: Osamu Kato, Sohei Saito, Yukiou Honkawa, Mitsuyuki Wasamoto, Tsugio Kataoka, Satoshi Yamabe
  • Patent number: 9741498
    Abstract: Provided are a current collector which has an excellent high-rate property and exerts a sufficient safety function when employed in a secondary battery or a capacitor, as well as an electrode, a secondary battery or a capacitor in which said current collector is employed. According to the invention, a current collector is provided which comprises: metal foil; and a conductive layer with a film thickness of 0.1 ?m to 10 ?m formed on a surface of said metal foil. Here, said conductive layer includes a conductive material and a binder material. A melting point of said binder material is 80° C. to 150° C. Further, said binder material shows, in differential scanning calorimetry (DSC) in a range from room temperature to 200° C., one or more endothermic peaks in the heating-up process. In a case where said binder material shows two or more endothermic peaks, each difference between said peaks is 15° C. or more. Moreover, said binder material shows one or more exothermic peaks in the cooling-down process.
    Type: Grant
    Filed: July 11, 2013
    Date of Patent: August 22, 2017
    Assignees: Furukawa Electric Co., Ltd., UACJ FOIL Corporation, UACJ Corporation
    Inventors: Takahiro Iida, Yasumasa Morishima, Takayori Ito, Hidekazu Hara, Tsugio Kataoka, Mitsuya Inoue, Satoshi Yamabe, Osamu Kato, Yukiou Honkawa, Sohei Saito, Tatsuhiro Yaegashi
  • Patent number: 9508994
    Abstract: A current collector, an electrode structure, a non-aqueous electrolyte battery, and an electrical storage device capable of providing superior shut down function are provided. According to the present invention, a current collector having a resin layer on at least one side of a conductive substrate, wherein: the resin layer has a thermoplastic resin dispersed in a thermosetting resin base material, the thermoplastic resin encapsuling a conductive agent; a value given by (average thickness of the conductive agent)/(average thickness of the thermoplastic resin) is 0.5 to 3; the conductive agent is formulated so that a value of volume % given by (conductive agent)/(conductive agent+thermoplastic resin) is 10 to 50%; and formulation ratio of the thermoplastic resin is 10 to 65%, is provided.
    Type: Grant
    Filed: May 10, 2013
    Date of Patent: November 29, 2016
    Assignees: UACJ CORPORATION, UACJ FOIL CORPORATION
    Inventors: Osamu Kato, Sohei Saito, Yukiou Honkawa, Mitsuyuki Wasamoto, Tsugio Kataoka, Satoshi Yamabe
  • Publication number: 20160322641
    Abstract: A current collector having high safety, the current collector being capable of stably maintaining the PTC function even when the temperature further increases after realizing the PTC function when used for the electrode structure of electrical storage devices such as non-aqueous electrolyte batteries, electrical double layer capacitors, and lithium ion capacitors; electrode structures; electrical storage devices; and composition for current collectors, is provided. A current collector 100 including a conductive substrate 103 and a resin layer 105 provided onto at least one side of the conductive substrate 103, is provided. Here, the resin layer 105 is obtained by coating a paste onto the conductive substrate 103, followed by cross-linking. The paste includes polyolefin-based emulsion particles 125, a conductive material 121, and a cross-linker 131.
    Type: Application
    Filed: November 15, 2013
    Publication date: November 3, 2016
    Applicants: UACJ CORPORATION, UACJ FOIL CORPORATION, FURUKAWA ELECTRIC CO., LTD.
    Inventors: Sohei Saito, Osamu Kato, Yukiou Honkawa, Tatsuhiro Yaegashi, Tsugio Kataoka, Mitsuya Inoue, Satoshi Yamabe, Yasumasa Morishima, Takayori Ito, Hidekazu Hara, Takahiro Iida
  • Publication number: 20160276673
    Abstract: A manufacturing method for a current collector includes dispersing and agitating a fluorine-based resin and conductive particles for 5 to 60 minutes at 1000 to 5000 rpm, dispersing and agitating the fluorine-based resin and conductive particles for 10 to 120 minutes at 2000 to 7000 rpm. The resin layer includes a fluorine-based resin and conductive particles, has a thickness of 0.3 to 20 ?m. The current collector has one or more of: (1) average diameter of the particles is 0.5 to 25 ?m, and a surface occupying ratio of the particles at a surface is 10 to 50%; (2) surface resistance of the resin layer at 20° C. is 1.0 to 10?, resistance after heating at 220° C. is 200 to 600?, and (3) surface resistance of the resin layer at 20° C. is 1.8 to 9.7?, resistance after heating at 180° C. is 209 to 532?.
    Type: Application
    Filed: June 1, 2016
    Publication date: September 22, 2016
    Applicants: UACJ Corporation, UACJ Foil Corporation
    Inventors: Osamu Kato, Sohei Saito, Yukiou Honkawa, Mitsuyuki Wasamoto, Tsugio Kataoka, Satoshi Yamabe
  • Publication number: 20160126557
    Abstract: Provided is a current collector with low resistance and superior durability, which hardly suffer any change in the appearance of the current collector after the pressing process, and electrode structures, non-aqueous electrolyte batteries, and electrical storage devices using such current collector. A current collector, including an aluminum foil; and a conductive resin layer provided on at least one side of the aluminum foil; wherein the conductive resin layer includes a resin and conductive particles; the aluminum foil has a tensile strength of 180 MPa or higher; an indentation hardness at a surface of the conductive resin layer of the current collector is 600 MPa or lower; and an area occupying ratio of the conductive particles at the surface of the conductive resin layer is 45% or higher, is provided.
    Type: Application
    Filed: March 20, 2014
    Publication date: May 5, 2016
    Applicant: UACJ CORPORATION
    Inventors: Tsugio Kataoka, Mitsuya Inoue, Satoshi Yamabe, Osamu Kato, Yukiou Honkawa, Sohei Saito, Tatsuhiro Yaegashi
  • Publication number: 20160042878
    Abstract: A current collector with high safety which can realize both of a superior conductivity at normal temperature conditions and a superior shut down function at high temperature conditions, is provided. A current collector, including a conductive substrate; and a resin layer provided on at least one side of the conductive substrate, is provided. Here, the resin layer is formed with a paste containing an aggregate of polyolefin-based emulsion particles; and a conductive material. Further, the aggregate has an average particle diameter of 0.5 to 5 ?m.
    Type: Application
    Filed: March 26, 2014
    Publication date: February 11, 2016
    Applicants: UACJ CORPORATION, UACJ FOIL CORPORATION, FURUKAWA ELECTRIC CO., LTD.
    Inventors: Osamu Kato, Sohei Saito, Yukiou Honkawa, Tatsuhiro Yaegashi, Tsugio Kataoka, Mitsuya Inoue, Satoshi Yamabe, Yasumasa Morishima, Takayori Ito, Hidekazu Hara, Takahiro Iida
  • Publication number: 20150311001
    Abstract: A current collector which can achieve both of the improvement in battery characteristics by reducing the initial (at ambient temperature) interface resistance and the improvement in safety by the PTC function, when the current collector is used for the electrode structure of electrical storage devices such as non-aqueous electrolyte batteries, electrical double layer capacitors, and lithium ion capacitors; electrode structures; electrical storage devices; and composition for current collectors; are provided. A current collector, including: a conductive substrate 103; and a resin layer 105 provided on at least one side of the conductive substrate 103; is provided. Here, the resin layer is formed by coating a paste including: polyolefin-based emulsion particles 125; and a conductive material 121; onto the conductive substrate 103. The coating weight of the paste is 0.1 to 20 g/m2; and the porosity of the resin layer 105 is 10% (v/v) or less.
    Type: Application
    Filed: November 15, 2013
    Publication date: October 29, 2015
    Applicants: UACJ Corporation, UACJ Foil Corporation, Furukawa Electric Co., Ltd.
    Inventors: Osamu Kato, Sohei Saito, Yukiou Honkawa, Tatsuhiro Yaegashi, Tsugio Kataoka, Mitsuya Inoue, Satoshi Yamabe, Yasumasa Morishima, Takayori Ito, Hidekazu Hara, Takahiro Iida
  • Publication number: 20150303484
    Abstract: A current collector which can realize sufficient safety function even when the cell is deformed by external force or when the internal pressure is increased; and an electrode, a secondary battery, and a capacitor using the current collector; are provided. A current collector, including: a metal foil; and a conductive layer formed on a surface of the metal foil; is provided. Here, regarding the current collector, a temperature-resistance curve of the current collector obtained by sandwiching the current collector in between brass electrodes of 1 cm diameter, the measurement of resistance being performed with conditions of 15N of load between the electrodes and temperature being raised from ambient temperature at a rate of 10° C./min satisfies a relation of R(Ta+5)/R(Ta?5)?1, R(Ta+5) being resistance at temperature Ta+5° C. and R(Ta?5) being resistance at temperature Ta?5° C., Ta being a temperature higher than a temperature satisfying a relation of (R(T)/R(T?5))>2.
    Type: Application
    Filed: November 18, 2013
    Publication date: October 22, 2015
    Applicants: FURUKAWA ELECTRIC CO., LTD., UACJ FOIL CORPORATION, UACJ CORPORATION
    Inventors: Takahiro Iida, Yasumasa Morishima, Takayori Ito, Hidekazu Hara, Tsugio Kataoka, Satoshi Yamabe, Mitsuya Inoue, Osamu Kato, Sohei Saito, Yukiou Honkawa, Tatsuhiro Yaegashi
  • Publication number: 20150294802
    Abstract: Provided is a current collector which has a PTC layer having room for thermal expansion at elevated temperature while securing sufficient conductivity at normal temperature. According to the invention, a current collector comprising a conductive base material, and a resin layer formed on at least one surface of the conductive base material is provided. The resin layer contains an organic resin and conductive particles. A deposition amount of the resin layer on the conductive base material is 0.5 to 20 g/m2. Rz (ten point average roughness) of the surface of the resin layer is 0.4 to 10 ?m. Sm (average spacing of ruggedness) of the surface of the resin layer is 5 to 200 ?m. An average of resistance of the resin layer measured by the two-terminal method is 0.5 to 50 ?.
    Type: Application
    Filed: July 11, 2013
    Publication date: October 15, 2015
    Applicants: Furukawa Electric., Ltd., UACJ Foil Corporation, UACJ Corporation
    Inventors: Osamu Kato, Yasumasa Morishima, Takayori Ito, Hidekazu Hara, Takahiro Iida, Tsugio Kataoka, Mitsuya Inoue, Satoshi Yamabe, Yukiou Honkawa, Sohei Saito, Tatsuhiro Yaegashi
  • Publication number: 20150280241
    Abstract: The present invention provides a current collector having a conductive layer which is excellent in adhesion strength and can exhibit a PTC function for stably contributing to safety, when used for an electrode structure for non-aqueous electrolyte batteries or for electrical storage devices. A current collector, including a metal foil and a conductive layer formed on at least one side of the metal foil, the conductive layer being formed partially or entirely on the surface of the metal foil; is provided. Here, the conductive layer contains core shell particles including core particles 114 having insulating crystalline polymer as a main component, and a shell layer 116 having conductivity, the shell layer 116 being formed on the surface of the core particles 114.
    Type: Application
    Filed: September 18, 2013
    Publication date: October 1, 2015
    Applicants: Furukawa Electric Co., Ltd., UACJ Corporation, UACJ Foil Corporation
    Inventors: Hidekazu Hara, Takahiro Iida, Yasumasa Morishima, Takayori Ito, Sohei Saito, Osamu Kato, Yukiou Honkawa, Tatsuhiro Yaegashi, Tsugio Kataoka, Mitsuya Inoue, Satoshi Yamabe
  • Publication number: 20150221449
    Abstract: Provided is a current collector which can secure safety by certainly exhibiting the PTC function when used for an electrode structure of an electrical storage device such as non-aqueous electrolyte batteries, electrical double layer capacitors, lithium ion capacitors, and the like. Here, the current collector shall also be capable of being used for high-speed charge/discharge, having long life, being high in safety, and having excellent productivity. According to the present invention, a current collector 1 including a substrate 3, and a resin layer 5 formed on at least one side of the substrate 3, the resin layer 5 having conductivity, is provided. The current collector 1 satisfies the following conditions of: (1) a degree of swelling of the resin layer 5 with a non-aqueous electrolyte solution is 1% or more and 1000% or less at a PTC realization temperature, and (2) the PTC realization temperature is in the range from 65° C. to 200° C.
    Type: Application
    Filed: September 18, 2013
    Publication date: August 6, 2015
    Applicants: UACJ Corporation, UACJ Foil Corporation, Furukawa Electric Co., Ltd.
    Inventors: Sohei Saito, Osamu Kato, Yukiou Honkawa, Tatsuhiro Yaegashi, Tsugio Kataoka, Mitsuya Inoue, Satoshi Yamabe, Yasumasa Morishima, Takayori Ito, Hidekazu Hara, Takahiro Iida
  • Publication number: 20150221452
    Abstract: Provided are a current collector which has an excellent high-rate property and exerts a sufficient safety function when employed in a secondary battery or a capacitor, as well as an electrode, a secondary battery or a capacitor in which said current collector is employed. According to the invention, a current collector is provided which comprises: metal foil; and a conductive layer with a film thickness of 0.1 ?m to 10 ?m formed on a surface of said metal foil. Here, said conductive layer includes a conductive material and a binder material. A melting point of said binder material is 80° C. to 150° C. Further, said binder material shows, in differential scanning calorimetry (DSC) in a range from room temperature to 200° C., one or more endothermic peaks in the heating-up process. In a case where said binder material shows two or more endothermic peaks, each difference between said peaks is 15° C. or more. Moreover, said binder material shows one or more exothermic peaks in the cooling-down process.
    Type: Application
    Filed: July 11, 2013
    Publication date: August 6, 2015
    Applicants: Furukawa Electric Co., Ltd., UACJ FOIL Corporation, UACJ Corporation
    Inventors: Takahiro Iida, Yasumasa Morishima, Takayori Ito, Hidekazu Hara, Tsugio Kataoka, Mitsuya Inoue, Satoshi Yamabe, Osamu Kato, Yukiou Honkawa, Sohei Saito, Tatsuhiro Yaegashi
  • Publication number: 20150214551
    Abstract: The present invention provides a current collector foil; and an electrode structure, lithium secondary battery or an electrical double layer capacitor using the current collector foil, which can achieve superior high rate characteristics. Provided is a current collector foil for forming thereon an active material layer containing active material particles, wherein: the current collector foil is provided with a roughened portion; a cross sectional curve of the roughened portion has a box counting dimension of 1.1 or higher; and an average length of waviness motif AW of the cross-sectional curve of the roughened portion is longer than twice of D10, D10 being a particle diameter of the active material particle in particle size cumulative distribution, the active material particle being used for the active material layer formed on the current collector foil.
    Type: Application
    Filed: July 11, 2013
    Publication date: July 30, 2015
    Applicants: Furukawa Electric Co., Ltd., UACJ Foil Corporation, UACJ Corporation
    Inventors: Takayori Ito, Yasumasa Morishima, Hidekazu Hara, Takahiro Iida, Tsugio Kataoka, Mitsuya Inoue, Satoshi Yamabe, Osamu Kato, Yukiou Honkawa, Sohei Saito, Tatsuhiro Yaegashi
  • Publication number: 20150125757
    Abstract: A current collector, an electrode structure, a non-aqueous electrolyte battery, and an electrical storage device capable of providing superior shut down function are provided. According to the present invention, a current collector having a resin layer on at least one side of a conductive substrate, wherein: the resin layer has a thermoplastic resin dispersed in a thermosetting resin base material, the thermoplastic resin encapsuling a conductive agent; a value given by (average thickness of the conductive agent)/(average thickness of the thermoplastic resin) is 0.5 to 3; the conductive agent is formulated so that a value of volume % given by (conductive agent)/(conductive agent+thermoplastic resin) is 10 to 50%; and formulation ratio of the thermoplastic resin is 10 to 65%, is provided.
    Type: Application
    Filed: May 10, 2013
    Publication date: May 7, 2015
    Applicants: UACJ CORPORATION, UACJ FOIL CORPORATION
    Inventors: Osamu Kato, Sohei Saito, Yukiou Honkawa, Mitsuyuki Wasamoto, Tsugio Kataoka, Satoshi Yamabe
  • Publication number: 20150118553
    Abstract: Current collector, an electrode structure, a non-aqueous electrolyte battery, and an electrical storage device having superior shut down function are provided. According to the present invention, a current collector having a resin layer on at least one side of a conductive substrate is provided. Here, thermoplastic resin particles substantially free of a conductive agent are dispersed in a thermosetting resin base material containing the conductive agent to structure the resin layer; a value of mass ratio given by (thermoplastic resin particles)/(conductive agent) is 0.3 to 1.5; and a value given by (average thickness of conductive agent)/(average thickness of thermoplastic resin particles) is 0.3 to 4.0.
    Type: Application
    Filed: May 10, 2013
    Publication date: April 30, 2015
    Inventors: Osamu Kato, Sohei Saito, Yukiou Honkawa, Mitsuyuki Wasamoto, Tsugio Kataoka, Satoshi Yamabe
  • Publication number: 20150064569
    Abstract: A current collector, an electrode structure, a non-aqueous electrolyte battery, and an electrical storage device capable of achieving superior shut down function, are provided. According to the present invention, a current collector 1 having a resin layer 5 on at least one side of a conductive substrate 3, the resin layer 5 including a fluorine-based resin and conductive particles 11, and having a thickness of 0.3 to 20 ?m, the current collector satisfying at least one of the following characteristics of (1) to (3): (1) average particle diameter of the conductive particles is 0.5 to 25 ?m, and a surface occupying ratio of the conductive particles at the surface of the resin layer is 10 to 50%, (2) resistance of the surface of the resin layer at 20° C. is 1.0 to 10?, and resistance after heating at 220° C. is 200 to 600?, and (3) resistance of the surface of the resin layer at 20° C. is 1.8 to 9.7?, and resistance after heating at 180° C. is 209 to 532?, is provided.
    Type: Application
    Filed: April 2, 2013
    Publication date: March 5, 2015
    Applicants: UACJ CORPORATION, UACJ Foil Corporation
    Inventors: Osamu Kato, Sohei Saito, Yukiou Honkawa, Mitsuyuki Wasamoto, Tsugio Kataoka, Satoshi Yamabe
  • Publication number: 20150050559
    Abstract: The present invention relates to current collectors, electrode structures, non-aqueous electrolyte batteries, and electrical storage devices (electrical double layer capacitors, lithium ion capacitors, and the like) that are capable to realize superior battery characteristics by suitably forming an active material layer by using an aqueous solvent. A current collector having a resin layer on at least one side of a conductive substrate, the resin layer being formed by a composition for current collector including an acryl-based resin containing acrylic acid ester and acryl amide or derivatives thereof as a main component; melamine or derivatives thereof; and carbon particles, is provided.
    Type: Application
    Filed: April 12, 2013
    Publication date: February 19, 2015
    Applicants: UACJ Corporation, UACJ Foil Corporation
    Inventors: Osamu Kato, Sohei Saito, Yukiou Honkawa, Mitsuyuki Wasamoto, Tsugio Kataoka, Satoshi Yamabe
  • Publication number: 20140315095
    Abstract: A current collector with improved electrochemical stability having a conductive resin layer formed thereon is provided. The current collector 3 of the present embodiment is structured by forming a conductive resin layer 1 on at least one side of a conductive substrate 2. Here, the conductive resin layer 1 contains an acryl-based resin or a soluble nitrocellulose-based resin, and a conductive material. The current collector 3 has a maximum current response of 10 ?A/cm2 or lower, when the current response is measured under conditions that the current collector is placed in a nonaqueous electrolyte solution at an electrode potential of +3V to +4.5V versus a lithium reference electrode.
    Type: Application
    Filed: July 27, 2012
    Publication date: October 23, 2014
    Applicants: UACJ FOIL CORPORATION, UACJ CORPORATION
    Inventors: Yukiou Honkawa, Osamu Kato, Sohei Saito, Mitsuyuki Wasamoto, Tsugio Kataoka