Patents by Inventor Tsui-Ling Hsu
Tsui-Ling Hsu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20200200758Abstract: The present disclosure relates to methods and compositions which can modulate the globoseries glycosphingolipid synthesis. Particularly, the present disclosure is directed to glycoenzyme inhibitor compound and compositions and methods of use thereof that can modulate the synthesis of globoseries glycosphingolipid SSEA-3/SSEA-4/GloboH in the biosynthetic pathway; particularly, the glycoenzyme inhibitors target the alpha-4GalT; beta-4GalNAcT-I; or beta-3GalT-V enzymes in the globoseries synthetic pathway. Additionally, the present disclosure is also directed to vaccines, antibodies, and/or immunogenic conjugate compositions targeting the SSEA-3/SSEA-4/GLOBO H associated epitopes (natural and modified) which elicit antibodies and/or binding fragment production useful for modulating the globoseries glycosphingolipid synthesis. Moreover, the present disclosure is also directed to the method of using the compositions described herein for the treatment or detection of hyperproliferative diseases and/or conditions.Type: ApplicationFiled: November 27, 2019Publication date: June 25, 2020Inventors: Chi-Huey WONG, Chung-Yi WU, Sarah K.C. CHEUNG, Po-Kai CHUANG, Tsui-Ling HSU
-
Patent number: 10495645Abstract: The present disclosure relates to methods and compositions which can modulate the globoseries glycosphingolipid synthesis. Particularly, the present disclosure is directed to glycoenzyme inhibitor compound and compositions and methods of use thereof that can modulate the synthesis of globoseries glycosphingolipid SSEA-3/SSEA-4/GloboH in the biosynthetic pathway; particularly, the glycoenzyme inhibitors target the alpha-4GalT; beta-4GalNAcT-I; or beta-3GalT-V enzymes in the globoseries synthetic pathway. Additionally, the present disclosure is also directed to vaccines, antibodies, and/or immunogenic conjugate compositions targeting the SSEA-3/SSEA-4/GLOBO H associated epitopes (natural and modified) which elicit antibodies and/or binding fragment production useful for modulating the globoseries glycosphingolipid synthesis. Moreover, the present disclosure is also directed to the method of using the compositions described herein for the treatment or detection of hyperproliferative diseases and/or conditions.Type: GrantFiled: January 25, 2016Date of Patent: December 3, 2019Assignee: ACADEMIA SINICAInventors: Chi-Huey Wong, Chung-Yi Wu, Sarah K. C. Cheung, Po-Kai Chuang, Tsui-Ling Hsu
-
Publication number: 20190269227Abstract: The present disclosure relates to a method for metabolic oligosaccharide engineering that incorporates derivatized alkyne-bearing sugar analogs as “tags” into cellular glycoconjugates. The disclosed method incorporates alkynyl derivatized Fuc and alkynyl derivatized ManNAc sugars into a cellular glycoconjugate. A chemical probe comprising an azide group and a visual probe or a fluorogenic probe is used to label the alkyne-derivatized sugar-tagged glycoconjugate. In one aspect, the chemical probe binds covalently to the alkynyl group by Cu(I)-catalyzed [3+2] azide-alkyne cycloaddition and is visualized at the cell surface, intracellularly, or in a cellular extract. The labeled glycoconjugate is capable of detection by flow cytometry, SDS-PAGE, Western blot, ELISA or confocal microscopy, and mass spectrometry.Type: ApplicationFiled: May 17, 2019Publication date: September 5, 2019Inventors: Chi-Huey WONG, Tsui-Ling HSU, Sarah R. HANSON, Masaaki SAWA
-
Publication number: 20190177435Abstract: Pharmaceutical composition comprising antibodies or antigen binding fragments thereof that bind to globo H, SSEA3, and SSEA-4 are disclosed herein, as well as methods of use thereof. Methods of use include, without limitation, cancer therapies and diagnostics. The antibodies of the disclosure can bind to certain cancer cell surfaces. Exemplary targets of the antibodies disclosed herein can include carcinomas, such as those in brain, skin, bone, lungs, breast, esophagus, stomach, liver, bile duct, pancreas, colon, kidney, cervical, ovarian, and/or prostate cancer.Type: ApplicationFiled: November 8, 2018Publication date: June 13, 2019Inventors: Chi-Huey Wong, Tsui-Ling Hsu, Yi-Wei Lou, Chih-Wei Lin, Shih-Chi Yeh, Chung-Yi Wu, Han-Chung Wu
-
Patent number: 10317393Abstract: Methods for metabolic oligosaccharide engineering that incorporates derivatized alkyne-bearing sugar analogs as “tags” into cellular glycoconjugates are disclosed. Alkynyl derivatized Fuc and alkynyl derivatized ManNAc sugars are incorporated into cellular glycoconjugates. Chemical probes comprising an azide group and a visual or fluorogenic probe and used to label alkyne-derivatized sugar-tagged glycoconjugates are disclosed. Chemical probes bind covalently to the alkynyl group by Cu(I)-catalyzed [3+2] azide-alkyne cycloaddition and are visualized at the cell surface, intracellularly, or in a cellular extract. The labeled glycoconjugate is capable of detection by flow cytometry, SDS-PAGE, Western blot, ELISA, confocal microscopy, and mass spectrometry.Type: GrantFiled: October 10, 2017Date of Patent: June 11, 2019Assignee: ACADEMIA SINICAInventors: Chi-Huey Wong, Tsui-Ling Hsu, Sarah R. Hanson, Masaaki Sawa
-
Publication number: 20190085062Abstract: Pharmaceutical composition comprising antibodies or antigen binding fragments thereof that bind to SSEA-4 are disclosed herein, as well as methods of use thereof. Methods of use include, without limitation, cancer therapies and diagnostics. The antibodies of the disclosure can bind to certain cancer cell surfaces. Exemplary targets of the antibodies disclosed herein can include carcinomas, such as those in brain, lung, breast, mouse, esophagus, stomach, liver, bile duct, pancreas, colon, kidney, cervix, ovary, and/or prostate cancer.Type: ApplicationFiled: May 25, 2018Publication date: March 21, 2019Inventors: Chi-Huey Wong, Tsui-Ling Hsu, Yi-Wei Lou, Chih-Wei Lin, Shih-Chi Yeh, Chung-Yi Wu, Han-Chung Wu
-
Patent number: 10150818Abstract: Pharmaceutical composition comprising antibodies or antigen binding fragments thereof that bind to globo H, SSEA3, and SSEA-4 are disclosed herein, as well as methods of use thereof. Methods of use include, without limitation, cancer therapies and diagnostics. The antibodies of the disclosure can bind to certain cancer cell surfaces. Exemplary targets of the antibodies disclosed herein can include carcinomas, such as those in brain, skin, bone, lungs, breast, esophagus, stomach, liver, bile duct, pancreas, colon, kidney, cervical, ovarian, and/or prostate cancer.Type: GrantFiled: July 13, 2015Date of Patent: December 11, 2018Assignee: Academia SinicaInventors: Chi-Huey Wong, Tsui-Ling Hsu, Yi-Wei Lou, Chih-Wei Lin, Shih-Chi Yeh, Chung-Yi Wu, Han-Chung Wu
-
Patent number: 9982041Abstract: Pharmaceutical composition comprising antibodies or antigen binding fragments thereof that bind to SSEA-4 are disclosed herein, as well as methods of use thereof. Methods of use include, without limitation, cancer therapies and diagnostics. The antibodies of the disclosure can bind to certain cancer cell surfaces. Exemplary targets of the antibodies disclosed herein can include carcinomas, such as those in brain, lung, breast, mouse, esophagus, stomach, liver, bile duct, pancreas, colon, kidney, cervix, ovary, and/or prostate cancer.Type: GrantFiled: January 16, 2015Date of Patent: May 29, 2018Assignee: ACADEMIA SINICAInventors: Chi-Huey Wong, Tsui-Ling Hsu, Yi-Wei Lou, Chih-Wei Lin, Shih-Chi Yeh, Chung-Yi Wu, Han-Chung Wu
-
Patent number: 9975965Abstract: Pharmaceutical composition comprising antibodies or antigen binding fragments thereof that bind to globo H, SSEA3, and SSEA-4 are disclosed herein, as well as methods of use thereof. Methods of use include, without limitation, cancer therapies and diagnostics. The antibodies of the disclosure can bind to certain cancer cell surfaces. Exemplary targets of the antibodies disclosed herein can include carcinomas, such as those in brain, skin, bone, lungs, breast, esophagus, stomach, liver, bile duct, pancreas, colon, kidney, cervical, ovarian, and/or prostate cancer.Type: GrantFiled: January 30, 2016Date of Patent: May 22, 2018Assignee: ACADEMIA SINICAInventors: Chi-Huey Wong, Tsui-Ling Hsu, Yi-Wei Lou, Chih-Wei Lin, Shih-Chi Yeh, Chung-Yi Wu, Han-Chung Wu
-
Publication number: 20180106780Abstract: Methods for metabolic oligosaccharide engineering that incorporates derivatized alkyne-bearing sugar analogs as “tags” into cellular glycoconjugates are disclosed. Alkynyl derivatized Fuc and alkynyl derivatized ManNAc sugars are incorporated into cellular glycoconjugates. Chemical probes comprising an azide group and a visual or fluorogenic probe and used to label alkyne-derivatized sugar-tagged glycoconjugates are disclosed. Chemical probes bind covalently to the alkynyl group by Cu(I)-catalyzed [3+2] azide-alkyne cycloaddition and are visualized at the cell surface, intracellularly, or in a cellular extract. The labeled glycoconjugate is capable of detection by flow cytometry, SDS-PAGE, Western blot, ELISA, confocal microscopy, and mass spectrometry.Type: ApplicationFiled: October 10, 2017Publication date: April 19, 2018Inventors: Chi-Huey WONG, Tsui-Ling HSU, Sarah R. Hanson, Masaaki SAWA
-
Patent number: 9816981Abstract: Methods for metabolic oligosaccharide engineering that incorporates derivatized alkyne-bearing sugar analogs as “tags” into cellular glycoconjugates are disclosed. Alkynyl derivatized Fuc and alkynyl derivatized ManNAc sugars are incorporated into cellular glycoconjugates. Chemical probes comprising an azide group and a visual or fluorogenic probe and used to label alkyne-derivatized sugar-tagged glycoconjugates are disclosed. Chemical probes bind covalently to the alkynyl group by Cu(I)-catalyzed [3+2] azide-alkyne cycloaddition and are visualized at the cell surface, intracellularly, or in a cellular extract. The labeled glycoconjugate is capable of detection by flow cytometry, SDS-PAGE, Western blot, ELISA, confocal microscopy, and mass spectrometry.Type: GrantFiled: June 13, 2011Date of Patent: November 14, 2017Assignee: ACADEMIA SINICAInventors: Masaaki Sawa, Chi-Huey Wong, Tsui-Ling Hsu, Sarah Hanson
-
Publication number: 20170283878Abstract: The present disclosure relates to methods and compositions which can modulate the globoseries glycosphingolipid synthesis. Particularly, the present disclosure is directed to glycoenzyme inhibitor compound and compositions and methods of use thereof that can modulate the synthesis of globoseries glycosphingolipid SSEA-3/SSEA-4/GloboH in the biosynthetic pathway; particularly, the glycoenzyme inhibitors target the alpha-4GalT; beta-4GalNAcT-I; or beta-3GalT-V enzymes in the globoseries synthetic pathway. Additionally, the present disclosure is also directed to vaccines, antibodies, and/or immunogenic conjugate compositions targeting the SSEA-3/SSEA-4/GLOBO H associated epitopes (natural and modified) which elicit antibodies and/or binding fragment production useful for modulating the globoseries glycosphingolipid synthesis. Moreover, the present disclosure is also directed to the method of using the compositions described herein for the treatment or detection of hyperproliferative diseases and/or conditions.Type: ApplicationFiled: December 12, 2016Publication date: October 5, 2017Inventors: Chi-Huey WONG, Chung-Yi WU, Sarah K.C. CHEUNG, Po-Kai CHUANG, Tsui-Ling HSU
-
Publication number: 20160289340Abstract: Pharmaceutical composition comprising antibodies or antigen binding fragments thereof that bind to globo H, SSEA3, and SSEA-4 are disclosed herein, as well as methods of use thereof. Methods of use include, without limitation, cancer therapies and diagnostics. The antibodies of the disclosure can bind to certain cancer cell surfaces. Exemplary targets of the antibodies disclosed herein can include carcinomas, such as those in brain, skin, bone, lungs, breast, esophagus, stomach, liver, bile duct, pancreas, colon, kidney, cervical, ovarian, and/or prostate cancer.Type: ApplicationFiled: January 30, 2016Publication date: October 6, 2016Inventors: Chi-Huey WONG, Tsui-Ling HSU, Yi-Wei LOU, Chih-Wei LIN, Shih-Chi YEH, Chung-Yi WU, Han-Chung WU, Han-Chung WU
-
Publication number: 20160274121Abstract: The present disclosure relates to methods and compositions which can modulate the globoseries glycosphingolipid synthesis. Particularly, the present disclosure is directed to glycoenzyme inhibitor compound and compositions and methods of use thereof that can modulate the synthesis of globoseries glycosphingolipid SSEA-3/SSEA-4/GloboH in the biosynthetic pathway; particularly, the glycoenzyme inhibitors target the alpha-4GalT; beta-4GalNAcT-I; or beta-3GalT-V enzymes in the globoseries synthetic pathway. Additionally, the present disclosure is also directed to vaccines, antibodies, and/or immunogenic conjugate compositions targeting the SSEA-3/SSEA-4/GLOBO H associated epitopes (natural and modified) which elicit antibodies and/or binding fragment production useful for modulating the globoseries glycosphingolipid synthesis. Moreover, the present disclosure is also directed to the method of using the compositions described herein for the treatment or detection of hyperproliferative diseases and/or conditions.Type: ApplicationFiled: January 25, 2016Publication date: September 22, 2016Inventors: Chi-Huey Wong, Chung-Yi Wu, Sarah K.C. Cheung, Po-Kai Chuang, Tsui-Ling Hsu
-
Publication number: 20160102151Abstract: Pharmaceutical composition comprising antibodies or antigen binding fragments thereof that bind to globo H, SSEA3, and SSEA-4 are disclosed herein, as well as methods of use thereof. Methods of use include, without limitation, cancer therapies and diagnostics. The antibodies of the disclosure can bind to certain cancer cell surfaces. Exemplary targets of the antibodies disclosed herein can include carcinomas, such as those in brain, skin, bone, lungs, breast, esophagus, stomach, liver, bile duct, pancreas, colon, kidney, cervical, ovarian, and/or prostate cancer.Type: ApplicationFiled: July 13, 2015Publication date: April 14, 2016Inventors: Chi-Huey WONG, Tsui-Ling HSU, Yi-Wei LOU, Chih-Wei LIN, Shih-Chi YEH, Chung-Yi WU, Han-Chung WU
-
Publication number: 20150344551Abstract: Pharmaceutical composition comprising antibodies or antigen binding fragments thereof that bind to SSEA-4 are disclosed herein, as well as methods of use thereof. Methods of use include, without limitation, cancer therapies and diagnostics. The antibodies of the disclosure can bind to certain cancer cell surfaces. Exemplary targets of the antibodies disclosed herein can include carcinomas, such as those in brain, lung, breast, mouse, esophagus, stomach, liver, bile duct, pancreas, colon, kidney, cervix, ovary, and/or prostate cancer.Type: ApplicationFiled: January 16, 2015Publication date: December 3, 2015Inventors: Chi-Huey Wong, Tsui-Ling Hsu, Yi-Wei Lou, Chih-Wei Lin, Shih-Chi Yeh, Chung-Yi Wu, Han-Chung Wu
-
Patent number: 8460669Abstract: Cellular receptors are identified that induce plasma leakage and other negative effects when infected with flaviviruses, such as dengue virus or Japanese encephamyelitis virus. Using fusion proteins disclosed herein, the receptors to which a pathogen, such as flavivirus, binds via glycan binding are determined. Once the receptors are determined, the effect of binding to a particular receptor may be determined, wherein targeting of the receptors causing a particular symptom may be targeted by agents that interrupt binding of the pathogen to the receptor. Accordingly, in the case of dengue virus and Japanese encephamyelitis virus, TNF-? is released when the pathogen binds to the DLVR1/CLEC5A receptor. Interrupting the DLVR1/CLEC5A receptor with monoclonal antibodies reduced TNF-? secretion without affecting secretion of cytokines responsible for viral clearance thereby increasing survival rates in infected mice from nil to around 50%.Type: GrantFiled: May 12, 2011Date of Patent: June 11, 2013Assignee: Academia SinicaInventors: Shie-Liang Hsieh, Chi-Huey Wong, Tsui-Ling Hsu, Szu-Ting Chen
-
Patent number: 8329413Abstract: Methods are provided for labeling cellular glycans bearing azide groups via fluorescent labeling comprising Cu(I)-catalyzed [3+2] cycloaddition of a probe comprising alkynyl group. Generation of fluorescent probes from a nonfluorescent precursor, 4-ethynyl-N-ethyl-1,8-naphthalimide, by Cu(I)-catalyzed [3+2] cycloaddition of the alkyne group of the probe to an azido-modified sugar are provided. Incorporation of azido-containing fucose analog into glycoconjugates via the fucose salvage pathway are disclosed. Fluorescent visualization of fucosylated cells by flow cytometry of cells treated with 6-azidofucose labeled with click-activated fluorogenic probe or biotinylated alkyne is disclosed. Visualization of intracellular location of fucosylated glycoconjugates by fluorescence microscopy are disclosed.Type: GrantFiled: March 21, 2011Date of Patent: December 11, 2012Assignee: Academia SinicaInventors: Chi-Huey Wong, Tsui-Ling Hsu, Sarah R Hanson, Masaaki Sawa
-
COMPOSTIONS AND METHODS FOR IDENTIFYING RESPONSE TARGETS AND TREATING FLAVIVIRUS INFECTION RESPONSES
Publication number: 20120213770Abstract: Cellular receptors are identified that induce plasma leakage and other negative effects when infected with flaviviruses, such as dengue virus or Japanese encephamyelitis virus. Using fusion proteins disclosed herein, the receptors to which a pathogen, such as flavivirus, binds via glycan binding are determined. Once the receptors are determined, the effect of binding to a particular receptor may be determined, wherein targeting of the receptors causing a particular symptom may be targeted by agents that interrupt binding of the pathogen to the receptor. Accordingly, in the case of dengue virus and Japanese encephamyelitis virus, TNF-? is released when the pathogen binds to the DLVR1/CLEC5A receptor. Interrupting the DLVR1/CLEC5A receptor with monoclonal antibodies reduced TNF-? secretion without affecting secretion of cytokines responsible for viral clearance thereby increasing survival rates in infected mice from nil to around 50%.Type: ApplicationFiled: May 12, 2011Publication date: August 23, 2012Applicant: Academia SinicaInventors: Shie-Liang Hsieh, Chi-Huey Wong, Tsui-Ling Hsu, Szu-Ting Chen -
Publication number: 20120149887Abstract: Methods for metabolic oligosaccharide engineering that incorporates derivatized alkyne-bearing sugar analogs as “tags” into cellular glycoconjugates are disclosed. Alkynyl derivatized Fuc and alkynyl derivatized ManNAc sugars are incorporated into cellular glycoconjugates. Chemical probes comprising an azide group and a visual or fluorogenic probe and used to label alkyne-derivatized sugar-tagged glycoconjugates are disclosed. Chemical probes bind covalently to the alkynyl group by Cu(I)-catalyzed [3+2] azide-alkyne cycloaddition and are visualized at the cell surface, intracellularly, or in a cellular extract. The labeled glycoconjugate is capable of detection by flow cytometry, SDS-PAGE, Western blot, ELISA, confocal microscopy, and mass spectrometry.Type: ApplicationFiled: June 13, 2011Publication date: June 14, 2012Applicant: ACADEMIA SINICAInventors: Masaaki Sawa, Chi-Huey Wong, Tsui-Ling Hsu, Sarah Hanson