Patents by Inventor Tsukasa Ohnishi

Tsukasa Ohnishi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190076966
    Abstract: A lead-free solder alloy capable of forming solder joints in which electromigration and an increase in resistance during electric conduction at a high current density are suppressed has an alloy composition consisting essentially of 1.0-13.0 mass % of In, 0.1-4.0 mass % of Ag, 0.3-1.0 mass % of Cu, a remainder of Sn. The solder alloy has excellent tensile properties even at a high temperature exceeding 100° C. and can be used not only for CPUs but also for power semiconductors.
    Type: Application
    Filed: August 13, 2018
    Publication date: March 14, 2019
    Inventors: Tsukasa Ohnishi, Shunsaku Yoshikawa, Ken Tachibana, Yoshie Yamanaka, Hikaru Nomura, Kyu-oh Lee
  • Patent number: 10137536
    Abstract: Provided is a solder alloy having excellent wettability on both of a Cu surface and an Ni surface. The solder alloy has such an alloy composition that 0.6 to 0.9 mass % of Cu and 0.01 to 0.1 mass % of Al are contained, 0.02 to 0.1 mass % of Ti and/or 0.01 to 0.05 mass % of Co may be contained as required and the remainder is made up by Sn.
    Type: Grant
    Filed: December 25, 2012
    Date of Patent: November 27, 2018
    Assignee: SENJU METAL INDUSTRY CO., LTD.
    Inventors: Tsukasa Ohnishi, Shunsaku Yoshikawa, Seiko Ishibashi, Rei Fujimaki
  • Patent number: 10076808
    Abstract: A lead-free solder alloy capable of forming solder joints in which electromigration and an increase in resistance during electric conduction at a high current density are suppressed has an alloy composition consisting essentially of 1.0-13.0 mass % of In, 0.1-4.0 mass % of Ag, 0.3-1.0 mass % of Cu, a remainder of Sn. The solder alloy has excellent tensile properties even at a high temperature exceeding 100° C. and can be used not only for CPUs but also for power semiconductors.
    Type: Grant
    Filed: August 5, 2013
    Date of Patent: September 18, 2018
    Assignee: Senju Metal Industry Co., Ltd.
    Inventors: Tsukasa Ohnishi, Shunsaku Yoshikawa, Ken Tachibana, Yoshie Yamanaka, Hikaru Nomura, Kyu-oh Lee
  • Patent number: 9844837
    Abstract: By using a solder alloy consisting essentially of 0.2-1.2 mass % of Ag, 0.6-0.9 mass % of Cu, 1.2-3.0 mass % of Bi, 0.02-1.0 mass % of Sb, 0.01-2.0 mass % of In, and a remainder of Sn, it is possible to obtain portable devices having excellent resistance to drop impact and excellent heat cycle properties without developing thermal fatigue even when used in a high-temperature environment such as inside a vehicle heated by the sun or in a low-temperature environment such as outdoors in snowy weather.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: December 19, 2017
    Assignee: Senju Metal Industry Co., Ltd.
    Inventors: Masato Shimamura, Tsukasa Ohnishi, Mitsuhiro Kosai, Kazuyori Takagi, Tomoko Nonaka, Masayuki Suzuki, Toru Hayashida, Seiko Ishibashi, Shunsaku Yoshikawa, Yoshie Yamanaka
  • Patent number: 9773721
    Abstract: A lead-free solder which can reduce the occurrence of voids and a connecting member which uses the solder and has excellent adhesion, bonding strength, and workability are provided. The lead-free solder alloy contains Sn: 0.1-3% and/or Bi: 0.1-2%, and a remainder of In and unavoidable impurities and has the effect of suppressing the occurrence of voids at the time of soldering. The connecting member is prepared by melting the lead-free solder alloy, immersing a metal substrate in the melt, and applying ultrasonic vibrations to the molten lead-free solder alloy and the metal substrate to form a lead-free solder alloy layer on the surface of the metal substrate. A heat sink and a package are soldered to each other through this connecting member by reflow heating in the presence of flux.
    Type: Grant
    Filed: June 25, 2014
    Date of Patent: September 26, 2017
    Assignee: SENJU METAL INDUSTRY CO., LTD.
    Inventors: Shunsaku Yoshikawa, Yoshie Yamanaka, Tsukasa Ohnishi, Seiko Ishibashi, Koji Watanabe, Hiroki Ishikawa, Yutaka Chiba
  • Patent number: 9700963
    Abstract: Provided is a process for mounting a BGA (Ball Grid Array) or CSP (Chip Size Package) on a printed circuit board. The process includes melting and fusing together solder paste and a solder ball. The solder ball has a solder composition that includes 0.5-1.1 mass % of Ag, 0.7-0.8 mass % of Cu, 0.05-0.08 mass % of Ni, and a remainder of Sn. In the process, the solder ball is placed on an electrode of the BGA or CSP substrate and the solder paste is applied onto an opposing electrode of the printed circuit board.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: July 11, 2017
    Assignee: Senju Metal Industry Co., Ltd.
    Inventors: Tsukasa Ohnishi, Yoshie Yamanaka, Ken Tachibana
  • Patent number: 9527167
    Abstract: A lead-free solder ball for electrodes of a BGA or CSP comprising 0.5-1.1 mass % of Ag, 0.7-0.8 mass % of Cu, 0.05-0.08 mass % of Ni, and a remainder of Sn. Even when a printed circuit board to which the solder ball is bonded has Cu electrodes or Au-plated or Au/Pd-plated Ni electrodes, the solder ball has good resistance to drop impacts. The composition may further contain at least one element selected from Fe, Co, and Pt in a total amount of 0.003-0.1 mass % or at least one element selected from Bi, In, Sb, P, and Ge in a total amount of 0.003-0.1 mass %.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: December 27, 2016
    Assignee: Senju Metal Industry Co., Ltd.
    Inventors: Tsukasa Ohnishi, Yoshie Yamanaka, Ken Tachibana
  • Publication number: 20160339543
    Abstract: Provided is a process for mounting a BGA (Ball Grid Array) or CSP (Chip Size Package) on a printed circuit board. The process includes melting and fusing together solder paste and a solder ball. The solder ball has a solder composition that includes 0.5-1.1 mass % of Ag, 0.7-0.8 mass % of Cu, 0.05-0.08 mass % of Ni, and a remainder of Sn. In the process, the solder ball is placed on an electrode of the BGA or CSP substrate and the solder paste is applied onto an opposing electrode of the printed circuit board.
    Type: Application
    Filed: June 29, 2016
    Publication date: November 24, 2016
    Inventors: Tsukasa Ohnishi, Yoshie Yamanaka, Ken Tachibana
  • Patent number: 8975757
    Abstract: Solder used for flip chip bonding inside a semiconductor package was a Sn—Pb solder such as a Pb-5Sn composition. Lead-free solders which have been studied are hard and easily form intermetallic compounds with Sn, so they were not suitable for a flip chip connection structure inside a semiconductor package, which requires stress relaxation properties. This problem is eliminated by a flip chip connection structure inside a semiconductor package using a lead-free solder which is characterized by consisting essentially of 0.01-0.5 mass percent of Ni and a remainder of Sn. 0.3-0.9 mass percent of Cu and 0.001-0.01 mass percent of P may be added to this solder composition.
    Type: Grant
    Filed: March 3, 2009
    Date of Patent: March 10, 2015
    Assignee: Senju Metal Industry Co., Ltd.
    Inventors: Minoru Ueshima, Masayuki Suzuki, Yoshie Yamanaka, Shunsaku Yoshikawa, Tokuro Yamaki, Tsukasa Ohnishi
  • Publication number: 20150037088
    Abstract: A lead-free solder alloy capable of forming solder joints in which electromigration and an increase in resistance during electric conduction at a high current density are suppressed has an alloy composition consisting essentially of 1.0-13.0 mass % of In, 0.1-4.0 mass % of Ag, 0.3-1.0 mass % of Cu, a remainder of Sn. The solder alloy has excellent tensile properties even at a high temperature exceeding 100° C. and can be used not only for CPUs but also for power semiconductors.
    Type: Application
    Filed: August 5, 2013
    Publication date: February 5, 2015
    Applicant: Senju Metal Industry Co., Ltd.
    Inventors: Tsukasa Ohnishi, Shunsaku Yoshikawa, Ken Tachibana, Yoshie Yamanaka, Hikaru Nomura, Kyu-oh Lee
  • Publication number: 20150029670
    Abstract: Provided is a solder alloy having excellent wettability on both of a Cu surface and an Ni surface. The solder alloy has such an alloy composition that 0.6 to 0.9 mass % of Cu and 0.01 to 0.1 mass % of Al are contained, 0.02 to 0.1 mass % of Ti and/or 0.01 to 0.05 mass % of Co may be contained as required and the remainder is made up by Sn.
    Type: Application
    Filed: December 25, 2012
    Publication date: January 29, 2015
    Inventors: Tsukasa Ohnishi, Shunsaku Yoshikawa, Seiko Ishibashi, Rei Fujimaki
  • Patent number: 8932519
    Abstract: A Sn—Ag—Cu based solder alloy capable of increasing the connection reliability of a solder joint when evaluated in a high temperature environment is provided. The alloy has an alloy composition consisting essentially of, in mass percent, Ag: 1.0-5.0%, Cu: 0.1-1.0%, Sb: 0.005-0.025%, Fe: 0.005-0.015%, and a remainder of Sn. The Fe content in mass percent is 0.006-0.014%. The Sb content in mass percent is 0.007-0.023%. Preferably Fe:Sb as a mass ratio is 20:80-60:40. The total content of Fe and Sb is preferably 0.012-0.032%.
    Type: Grant
    Filed: April 9, 2012
    Date of Patent: January 13, 2015
    Assignee: Senju Metal Industry Co., Ltd.
    Inventors: Seiko Ishibashi, Shunsaku Yoshikawa, Tsukasa Ohnishi
  • Patent number: 8896119
    Abstract: A semiconductor device is provided which has internal bonds which do not melt at the time of mounting on a substrate. A bonding material is used for internal bonding of the semiconductor device. The bonding material is obtained by filling the pores of a porous metal body having a mesh-like structure and covering the surface thereof with Sn or an Sn-based solder alloy.
    Type: Grant
    Filed: August 3, 2011
    Date of Patent: November 25, 2014
    Assignee: Senju Metal Industry Co., Ltd.
    Inventors: Yoshitsugu Sakamoto, Hiroyuki Yamada, Yoshie Yamanaka, Tsukasa Ohnishi, Shunsaku Yoshikawa, Kenzo Tadokoro
  • Publication number: 20140326490
    Abstract: A lead-free solder which can reduce the occurrence of voids and a connecting member which uses the solder and has excellent adhesion, bonding strength, and workability are provided. The lead-free solder alloy has a composition consisting essentially of Sn: 0.1-3% and/or Bi: 0.1-2%, and a remainder of In and unavoidable impurities and has the effect of suppressing the occurrence of voids at the time of soldering. The connecting member is prepared by melting the lead-free solder alloy, immersing a metal substrate in the melt, and applying ultrasonic vibrations to the molten lead-free solder alloy and the metal substrate to form a lead-free solder alloy layer on the surface of the metal substrate. A heat sink and a package are soldered to each other through this connecting member by reflow heating in the presence of flux.
    Type: Application
    Filed: June 25, 2014
    Publication date: November 6, 2014
    Applicant: Senju Metal Industry Co., Ltd.
    Inventors: Shunsaku Yoshikawa, Yoshie Yamanaka, Tsukasa Ohnishi, Seiko Ishibashi, Koji Watanabe, Hiroki Ishikawa, Yutaka Chiba
  • Publication number: 20140141273
    Abstract: By using a solder alloy consisting essentially of 0.2-1.2 mass % of Ag, 0.6-0.9 mass % of Cu, 1.2-3.0 mass % of Bi, 0.02-1.0 mass % of Sb, 0.01-2.0 mass % of In, and a remainder of Sn, it is possible to obtain portable devices having excellent resistance to drop impact and excellent heat cycle properties without developing thermal fatigue even when used in a high-temperature environment such as inside a vehicle heated by the sun or in a low-temperature environment such as outdoors in snowy weather.
    Type: Application
    Filed: March 23, 2012
    Publication date: May 22, 2014
    Applicant: SENJU METAL INDUSTRY CO., LTD.
    Inventors: Masato Shimamura, Tsukasa Ohnishi, Mitsuhiro Kosai, Kazuyori Takagi, Tomoko Nonaka, Masayuki Suzuki, Toru Hayashida, Seiko Ishibashi, Shunsaku Yoshikawa, Yoshie Yamanaka
  • Patent number: 8691143
    Abstract: A lead-free solder alloy is provided which has improved impact resistance to dropping even after thermal aging and which is excellent with respect to solderability, occurrence of voids, and yellowing. A solder alloy according to the present invention consists essentially of, in mass percent, (1) Ag: 0.8-2.0%, (2) Cu: 0.05-0.3%, (3) at least one element selected from In: at least 0.01% and less than 0.1%, Ni; 0.01-0.04%, Co: 0.01-0.05%, and Pt: 0.01-0.1%, optionally (4) at least one element selected from Sb, Bi, Fe, Al, Zn, and P in a total amount of up to 0.1%, and a remainder of Sn and impurities.
    Type: Grant
    Filed: May 31, 2006
    Date of Patent: April 8, 2014
    Assignee: Senju Metal Industry Co., Ltd.
    Inventors: Tsukasa Ohnishi, Tokuro Yamaki, Daisuke Soma
  • Publication number: 20140061287
    Abstract: A lead-free solder ball for electrodes of a BGA or CSP comprising 0.5-1.1 mass % of Ag, 0.7-0.8 mass % of Cu, 0.05-0.08 mass % of Ni, and a remainder of Sn. Even when a printed circuit board to which the solder ball is bonded has Cu electrodes or Au-plated or Au/Pd-plated Ni electrodes, the solder ball has good resistance to drop impacts. The composition may further contain at least one element selected from Fe, Co, and Pt in a total amount of 0.003-0.1 mass % or at least one element selected from Bi, In, Sb, P, and Ge in a total amount of 0.003-0.1 mass %.
    Type: Application
    Filed: March 28, 2012
    Publication date: March 6, 2014
    Applicant: SENJU METAL INDUSTRY CO., LTD.
    Inventors: Tsukasa Ohnishi, Yoshie Yamanaka, Ken Tachibana
  • Publication number: 20130343809
    Abstract: A Sn—Ag—Cu based solder alloy capable of increasing the connection reliability of a solder joint when evaluated in a high temperature environment is provided. The alloy has an alloy composition consisting essentially of, in mass percent, Ag: 1.0-5.0%, Cu: 0.1-1.0%, Sb: 0.005-0.025%, Fe: 0.005-0.015%, and a remainder of Sn. The Fe content in mass percent is 0.006-0.014%. The Sb content in mass percent is 0.007-0.023%. Preferably Fe:Sb as a mass ratio is 20:80-60:40. The total content of Fe and Sb is preferably 0.012-0.032%.
    Type: Application
    Filed: April 9, 2012
    Publication date: December 26, 2013
    Applicant: Senju Metal Industry Co., Ltd.
    Inventors: Seiko Ishibashi, Shunsaku Yoshikawa, Tsukasa Ohnishi
  • Publication number: 20130134591
    Abstract: A semiconductor device is provided which has internal bonds which do not melt at the time of mounting on a substrate. A bonding material is used for internal bonding of the semiconductor device. The bonding material is obtained by filling the pores of a porous metal body having a mesh-like structure and covering the surface thereof with Sn or an Sn-based solder alloy.
    Type: Application
    Filed: August 3, 2011
    Publication date: May 30, 2013
    Inventors: Yoshitsugu Sakamoto, Hiroyuki Yamada, Yoshie Yamanaka, Tsukasa Ohnishi, Shunsaku Yoshikawa, Kenzo Tadokoro
  • Publication number: 20120199393
    Abstract: A lead-free solder which can reduce the occurrence of voids and a connecting member which uses the solder and has excellent adhesion, bonding strength, and workability are provided. The lead-free solder alloy has a composition consisting essentially of Sn: 0.1-3% and/or Bi: 0.1-2%, and a remainder of In and unavoidable impurities and has the effect of suppressing the occurrence of voids at the time of soldering. The connecting member is prepared by melting the lead-free solder alloy, immersing a metal substrate in the melt, and applying ultrasonic vibrations to the molten lead-free solder alloy and the metal substrate to form a lead-free solder alloy layer on the surface of the metal substrate. A heat sink and a package are soldered to each other through this connecting member by reflow heating in the presence of flux.
    Type: Application
    Filed: September 2, 2010
    Publication date: August 9, 2012
    Inventors: Shunsaku Yoshikawa, Yoshie Yamanaka, Tsukasa Ohnishi, Seiko Ishibashi, Koji Watanabe, Hiroki Ishikawa, Yutaka Chiba