Patents by Inventor Tsukasa Torimoto

Tsukasa Torimoto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200308483
    Abstract: A method of producing semiconductor nanoparticles is provided. The method includes heating primary semiconductor nanoparticles and a salt of an element M1 in a solvent at a temperature set in a range of 100° C. to 300° C. The primary semiconductor nanoparticles contain the element M1, an element M2, optionally an element M3, and an element Z, and have an average particle size of 50 nm or less. The element M1 is at least one element selected from the group consisting of Ag, Cu, and Au. The element M2 is at least one element selected from the group consisting of Al, Ga, In, and Tl. The element M3 is at least one element selected from the group consisting of Zn and Cd. The element Z is at least one element selected from the group consisting of S, Se, and Te.
    Type: Application
    Filed: June 14, 2020
    Publication date: October 1, 2020
    Applicants: NATIONAL UNIVERSITY CORPORATION NAGOYA UNIVERSITY, NICHIA CORPORATION
    Inventors: Tsukasa TORIMOTO, Tatsuya KAMEYAMA, Akihiro FUKATSU, Daisuke OYAMATSU
  • Publication number: 20200295227
    Abstract: Provided is a method for manufacturing a semiconductor nanoparticle, the method includes performing a heat treatment of a first mixture containing a silver (Ag) salt, an alkali metal salt, a salt containing at least one of indium (In) and gallium (Ga), a sulfur source, and an organic solvent. A ratio of the number of atoms of an alkali metal to the total number of atoms of Ag and the alkali metal in the first mixture is greater than 0 and less than 1.
    Type: Application
    Filed: March 11, 2020
    Publication date: September 17, 2020
    Applicants: NATIONAL UNIVERSITY CORPORATION NAGOYA UNIVERSITY, OSAKA UNIVERSITY, NICHIA CORPORATION
    Inventors: Tsukasa TORIMOTO, Tatsuya KAMEYAMA, Yuki MORI, Hiroki YAMAUCHI, Susumu KUWABATA, Taro UEMATSU, Daisuke OYAMATSU
  • Patent number: 10717925
    Abstract: A method of producing semiconductor nanoparticles is provided. The method includes heating primary semiconductor nanoparticles and a salt of an element M1 in a solvent at a temperature set in a range of 100° C. to 300° C. The primary semiconductor nanoparticles contain the element M1, an element M2, optionally an element M3, and an element Z, and have an average particle size of 50 nm or less. The element M1 is at least one element selected from the group consisting of Ag, Cu, and Au. The element M2 is at least one element selected from the group consisting of Al, Ga, In, and Tl. The element M3 is at least one element selected from the group consisting of Zn and Cd. The element Z is at least one element selected from the group consisting of S, Se, and Te.
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: July 21, 2020
    Assignees: NATIONAL UNIVERSITY CORPORATION NAGOYA UNIVERSITY, NICHIA CORPORATION
    Inventors: Tsukasa Torimoto, Tatsuya Kameyama, Akihiro Fukatsu, Daisuke Oyamatsu
  • Publication number: 20200140752
    Abstract: A semiconductor nanoparticle includes a core and a shell covering a surface of the core. The shell has a larger bandgap energy than the core and is in heterojunction with the core. The semiconductor nanoparticle emits light when irradiated with light. The core is made of a semiconductor that contains M1, M2, and Z. M1 is at least one element selected from the group consisting of Ag, Cu, and Au. M2 is at least one element selected from the group consisting of Al, Ga, In and Tl. Z is at least one element selected from the group consisting of S, Se, and Te. The shell is made of a semiconductor that consists essentially of a Group 13 element and a Group 16 element.
    Type: Application
    Filed: January 2, 2020
    Publication date: May 7, 2020
    Applicants: OSAKA UNIVERSITY, NATIONAL UNIVERSITY CORPORATION NAGOYA UNIVERSITY, NICHIA CORPORATION
    Inventors: Susumu KUWABATA, Taro UEMATSU, Kazutaka WAJIMA, Tsukasa TORIMOTO, Tatsuya KAMEYAMA, Daisuke OYAMATSU, Kenta NIKI
  • Publication number: 20200140751
    Abstract: Provided is a ternary or quaternary semiconductor nanoparticle that enables the band-edge emission and a less toxic composition. A semiconductor nanoparticle is provided that contains Ag, In, and S and has an average particle size of 50 nm or less, wherein the ratio of the number of atoms of Ag to the total number of atoms of Ag and In is 0.320 or more and 0.385 or less, the ratio of the number of atoms of S to the total number of atoms of Ag and In is 1.20 or more and 1.45 or less. The semiconductor nanoparticle is adapted to emit photoluminescence having a photoluminescence lifetime of 200 ns or less upon being irradiated with light having a wavelength in a range of 350 nm to 500 nm.
    Type: Application
    Filed: December 17, 2019
    Publication date: May 7, 2020
    Applicants: NATIONAL UNIVERSITY CORPORATION NAGOYA UNIVERSITY, OSAKA UNIVERSITY, NICHIA CORPORATION
    Inventors: Tsukasa TORIMOTO, Tatsuya KAMEYAMA, Marino KISHI, Susumu KUWABATA, Taro UEMATSU, Daisuke OYAMATSU
  • Publication number: 20200140750
    Abstract: A semiconductor light emitting element is provided. The semiconductor light emitting element has a semiconductor stack, an n-side conductor layer, a p-side conductor layer, a dielectric multilayered film, an n-side reflective layer and a p-side reflective layer, disposed in that order. The n-side and p-side reflective layers contain Ag as a major component and contain particles of at least one selected from an oxide, a nitride, and a carbide.
    Type: Application
    Filed: December 17, 2019
    Publication date: May 7, 2020
    Applicants: NATIONAL UNIVERSITY CORPORATION NAGOYA UNIVERSITY, OSAKA UNIVERSITY, NICHIA CORPORATION
    Inventors: Tsukasa TORIMOTO, Tatsuya KAMEYAMA, Marino KISHI, Susumu KUWABATA, Taro UEMATSU, Daisuke OYAMATSU
  • Patent number: 10563122
    Abstract: A semiconductor nanoparticle includes a core and a shell covering a surface of the core. The shell has a larger bandgap energy than the core and is in heterojunction with the core. The semiconductor nanoparticle emits light when irradiated with light. The core is made of a semiconductor that contains M1, M2, and Z. M1 is at least one element selected from the group consisting of Ag, Cu, and Au. M2 is at least one element selected from the group consisting of Al, Ga, In and Tl. Z is at least one element selected from the group consisting of S, Se, and Te. The shell is made of a semiconductor that consists essentially of a Group 13 element and a Group 16 element.
    Type: Grant
    Filed: March 15, 2017
    Date of Patent: February 18, 2020
    Assignees: OSAKA UNIVERSITY, NATIONAL UNIVERSITY CORPORATION NAGOYA UNIVERSITY, NICHIA CORPORATION
    Inventors: Susumu Kuwabata, Taro Uematsu, Kazutaka Wajima, Tsukasa Torimoto, Tatsuya Kameyama, Daisuke Oyamatsu, Kenta Niki
  • Patent number: 10550322
    Abstract: Provided is a ternary or quaternary semiconductor nanoparticle that enables the band-edge emission and a less toxic composition. A semiconductor nanoparticle is provided that contains Ag, In, and S and has an average particle size of 50 nm or less, wherein the ratio of the number of atoms of Ag to the total number of atoms of Ag and In is 0.320 or more and 0.385 or less, the ratio of the number of atoms of S to the total number of atoms of Ag and In is 1.20 or more and 1.45 or less. The semiconductor nanoparticle is adapted to emit photoluminescence having a photoluminescence lifetime of 200 ns or less upon being irradiated with light having a wavelength in a range of 350 nm to 500 nm.
    Type: Grant
    Filed: September 5, 2017
    Date of Patent: February 4, 2020
    Assignees: NATIONAL UNIVERSITY CORPORATION NAGOYA UNIVERSITY, OSAKA UNIVERSITY, NICHIA CORPORATION
    Inventors: Tsukasa Torimoto, Tatsuya Kameyama, Marino Kishi, Susumu Kuwabata, Taro Uematsu, Daisuke Oyamatsu
  • Publication number: 20200006601
    Abstract: Semiconductor nanoparticles including Ag, In, Ga, and S are provided. In the semiconductor nanoparticles, a ratio of a number of Ga atoms to a total number of In and Ga atoms is 0.95 or less. The semiconductor nanoparticles emit light having an emission peak with a wavelength in a range of from 500 nm to less than 590 nm, and a half bandwidth of 70 nm or less, and have an average particle diameter of 10 nm or less.
    Type: Application
    Filed: February 28, 2018
    Publication date: January 2, 2020
    Applicants: NATIONAL UNIVERSITY CORPORATION NAGOYA UNIVERSITY, OSAKA UNIVERSITY, NICHIA CORPORATION
    Inventors: Tsukasa TORIMOTO, Tatsuya KAMEYAMA, Marino KISHI, Chie MIYAMAE, Susumu KUWABATA, Taro UEMATSU, Daisuke OYAMATSU, Kenta NIKI
  • Publication number: 20190345384
    Abstract: A method of producing semiconductor nanoparticles, semiconductor nanoparticles, and a light-emitting device are provided. The method includes heat-treating a mixture containing a salt of Ag, a salt containing at least one of In and Ga, an Se supply source, and an organic solvent at a temperature in the range of above 200° C. to 370° C. In the method, the ratio of the number of Ag atoms to the total number of In and Ga atoms in the mixture is above 0.43 to 2.5. The semiconductor nanoparticles contains Ag, at least one of In and Ga, and Se. The light-emitting device includes a light conversion member containing the semiconductor nanoparticles and a semiconductor light-emitting element.
    Type: Application
    Filed: May 9, 2019
    Publication date: November 14, 2019
    Applicants: NATIONAL UNIVERSITY CORPORATION NAGOYA UNIVERSITY, OSAKA UNIVERSITY, NICHIA CORPORATION
    Inventors: Tsukasa TORIMOTO, Tatsuya KAMEYAMA, Hiroki YAMAUCHI, Chie MIYAMAE, Yuki MORI, Susumu KUWABATA, Taro UEMATSU, Daisuke OYAMATSU
  • Publication number: 20190153310
    Abstract: A method of producing semiconductor nanoparticles is provided. The method includes heating primary semiconductor nanoparticles and a salt of an element M1 in a solvent at a temperature set in a range of 100° C. to 300° C. The primary semiconductor nanoparticles contain the element M1, an element M2, optionally an element M3, and an element Z, and have an average particle size of 50 nm or less. The element M1 is at least one element selected from the group consisting of Ag, Cu, and Au. The element M2 is at least one element selected from the group consisting of Al, Ga, In, and Tl. The element M3 is at least one element selected from the group consisting of Zn and Cd. The element Z is at least one element selected from the group consisting of S, Se, and Te.
    Type: Application
    Filed: January 29, 2019
    Publication date: May 23, 2019
    Applicants: NATIONAL UNIVERSITY CORPORATION NAGOYA UNIVERSITY, NICHIA CORPORATION
    Inventors: Tsukasa TORIMOTO, Tatsuya KAMEYAMA, Akihiro FUKATSU, Daisuke OYAMATSU
  • Patent number: 10233389
    Abstract: A method of producing semiconductor nanoparticles is provided. The method includes heating primary semiconductor nanoparticles and a salt of an element M1 in a solvent at a temperature set in a range of 100° C. to 300° C. The primary semiconductor nanoparticles contain the element M1, an element M2, optionally an element M3, and an element Z, and have an average particle size of 50 nm or less. The element M1 is at least one element selected from the group consisting of Ag, Cu, and Au. The element M2 is at least one element selected from the group consisting of Al, Ga, In, and Tl. The element M3 is at least one element selected from the group consisting of Zn and Cd. The element Z is at least one element selected from the group consisting of S, Se, and Te.
    Type: Grant
    Filed: July 21, 2016
    Date of Patent: March 19, 2019
    Assignees: NATIONAL UNIVERSITY CORPORATION NAGOYA UNIVERSITY, NICHIA CORPORATION
    Inventors: Tsukasa Torimoto, Tatsuya Kameyama, Akihiro Fukatsu, Daisuke Oyamatsu
  • Patent number: 10081764
    Abstract: Tellurium compound nanoparticles, including: an element M1 where M1 is at least one element selected from Cu, Ag, and Au; an element M2 where M2 is at least one element selected from B, Al, Ga, and In; Te; and optionally an element M3 where M3 is at least one element selected from Zn, Cd, and Hg; wherein a crystal structure of the tellurium compound nanoparticles is a hexagonal system, the tellurium compound nanoparticles are of a rod shape and have an average short-axis length of 5.5 nm or less, and when irradiated with light at a wavelength in a range of 350 nm to 1,000 nm, the tellurium compound nanoparticles emit photoluminescence having a wavelength longer than the wavelength of the irradiation light.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: September 25, 2018
    Assignees: NATIONAL UNIVERSITY CORPORATION NAGOYA UNIVERSITY, NICHIA CORPORATION
    Inventors: Tsukasa Torimoto, Tatsuya Kameyama, Yujiro Ishigami, Kouta Sugiura, Daisuke Oyamatsu
  • Publication number: 20180066183
    Abstract: Provided is a ternary or quaternary semiconductor nanoparticle that enables the band-edge emission and a less toxic composition. A semiconductor nanoparticle is provided that contains Ag, In, and S and has an average particle size of 50 nm or less, wherein the ratio of the number of atoms of Ag to the total number of atoms of Ag and In is 0.320 or more and 0.385 or less, the ratio of the number of atoms of S to the total number of atoms of Ag and In is 1.20 or more and 1.45 or less. The semiconductor nanoparticle is adapted to emit photoluminescence having a photoluminescence lifetime of 200 ns or less upon being irradiated with light having a wavelength in a range of 350 nm to 500 nm.
    Type: Application
    Filed: September 5, 2017
    Publication date: March 8, 2018
    Applicants: NATIONAL UNIVERSITY CORPORATION NAGOYA UNIVERSITY, OSAKA UNIVERSITY, NICHIA CORPORATION
    Inventors: Tsukasa TORIMOTO, Tatsuya KAMEYAMA, Marino KISHI, Susumu KUWABATA, Taro UEMATSU, Daisuke OYAMATSU
  • Publication number: 20170267924
    Abstract: A semiconductor nanoparticle includes a core and a shell covering a surface of the core. The shell has a larger bandgap energy than the core and is in heterojunction with the core. The semiconductor nanoparticle emits light when irradiated with light. The core is made of a semiconductor that contains M1, M2, and Z. M1 is at least one element selected from the group consisting of Ag, Cu, and Au. M2 is at least one element selected from the group consisting of Al, Ga, In and Tl. Z is at least one element selected from the group consisting of S, Se, and Te. The shell is made of a semiconductor that consists essentially of a Group 13 element and a Group 16 element.
    Type: Application
    Filed: March 15, 2017
    Publication date: September 21, 2017
    Applicants: OSAKA UNIVERSITY, NATIONAL UNIVERSITY CORPORATION NAGOYA UNIVERSITY, NICHIA CORPORATION
    Inventors: Susumu KUWABATA, Taro UEMATSU, Kazutaka WAJIMA, Tsukasa TORIMOTO, Tatsuya KAMEYAMA, Daisuke OYAMATSU, Kenta NIKI
  • Publication number: 20170022413
    Abstract: A method of producing semiconductor nanoparticles is provided. The method includes heating primary semiconductor nanoparticles and a salt of an element M1 in a solvent at a temperature set in a range of 100° C. to 300° C. The primary semiconductor nanoparticles contain the element M1, an element M2, optionally an element M3, and an element Z, and have an average particle size of 50 nm or less. The element M1 is at least one element selected from the group consisting of Ag, Cu, and Au. The element M2 is at least one element selected from the group consisting of Al, Ga, In, and Tl. The element M3 is at least one element selected from the group consisting of Zn and Cd. The element Z is at least one element selected from the group consisting of S, Se, and Te.
    Type: Application
    Filed: July 21, 2016
    Publication date: January 26, 2017
    Applicants: NATIONAL UNIVERSITY CORPORATION NAGOYA UNIVERSITY, NICHIA CORPORATION
    Inventors: Tsukasa TORIMOTO, Tatsuya KAMEYAMA, Akihiro FUKATSU, Daisuke OYAMATSU
  • Publication number: 20170002265
    Abstract: Tellurium compound nanoparticles, including: an element M1 where M1 is at least one element selected from Cu, Ag, and Au; an element M2 where M2 is at least one element selected from B, Al, Ga, and In; Te; and optionally an element M3 where M3 is at least one element selected from Zn, Cd, and Hg; wherein a crystal structure of the tellurium compound nanoparticles is a hexagonal system, the tellurium compound nanoparticles are of a rod shape and have an average short-axis length of 5.5 nm or less, and when irradiated with light at a wavelength in a range of 350 nm to 1,000 nm, the tellurium compound nanoparticles emit photoluminescence having a wavelength longer than the wavelength of the irradiation light.
    Type: Application
    Filed: July 1, 2016
    Publication date: January 5, 2017
    Applicants: NATIONAL UNIVERSITY CORPORATION NAGOYA UNIVERSITY, NICHIA CORPORATION
    Inventors: Tsukasa TORIMOTO, Tatsuya KAMEYAMA, Yujiro ISHIGAMI, Kouta SUGIURA, Daisuke OYAMATSU
  • Patent number: 9535006
    Abstract: Semiconductor nanoparticles of the present invention are particles each having a core-shell structure that includes a core and a shell surrounding the core. The core includes (AgIn)xZn2(1-x)S2 (0.4?x?0.95 holds). The shell includes ZnS or ZnO, and the semiconductor nanoparticles each have at least one hydrophilic functional group on a surface of the shell. As the hydrophilic functional group, for example, a carboxyl group or a sulfo group may be mentioned. Since having a low toxicity and a high emission quantum yield, the semiconductor nanoparticles as described above may be used for a fluorescent probe for biological labeling.
    Type: Grant
    Filed: October 17, 2013
    Date of Patent: January 3, 2017
    Assignee: NATIONAL UNIVERSITY CORPORATION NAGOYA UNIVERSITY
    Inventors: Hiroshi Yukawa, Hiroyasu Nishi, Tsukasa Torimoto, Yoshinobu Baba
  • Publication number: 20160214088
    Abstract: The present invention relates to an exhaust gas purification catalyst that can homogeneously inhibit growth of a plurality of the fine particles at high temperature, and prevent lowering in catalytic activity, as well as a method for producing it. The exhaust gas purification catalyst of the present invention has fine composite metal particles containing a platinum-group metal and tungsten. Moreover, in the exhaust gas purification catalyst of the present invention, when the fine composite metal particles in the exhaust gas purification catalyst have been analyzed by STEM-EDX, the tungsten content of at least 80% of the fine composite metal particles based on number, is in the range of 10% to 350% of the mean content of tungsten in a plurality of the fine composite metal particles.
    Type: Application
    Filed: January 27, 2016
    Publication date: July 28, 2016
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, NATIONAL UNIVERSITY CORPORATION NAGOYA UNIVERSITY
    Inventors: Shogo SHIRAKAWA, Hirohito HIRATA, Tatsuya MIYAZAKI, Megumi YANAGIDA, Tsukasa TORIMOTO
  • Patent number: 9028723
    Abstract: Copper(II) acetate, zinc(II) acetate, and tin(IV) acetate are weighed so that the total amount of metal ions is 2.0×10?4 mol and the molar ratio of ions is Cu:Zn:Sn=2:1:1, and 2.0 cm3 of oleylamine is added to prepare a mixed solution. Apart from this, 1.0 cm3 of oleylamine is added to 2.0×10?4 mol of sulfur powder to prepare a mixed solution. These mixed solutions are separately heated at 60° C. and mixed at room temperature. The pressure in a test tube is reduced, followed by nitrogen filling. The test tube is heated at 240° C. for 30 minutes and then allowed to stand until room temperature. The resultant product is separated into a supernatant and precipitates by centrifugal separation. The separated supernatant is filtered, methanol is added to produce precipitates. The precipitates are dissolved by adding chloroform to prepare a semiconductor nanoparticle solution.
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: May 12, 2015
    Assignees: National University Corporation Nagoya University, Osaka University, Tokyo University of Science Educational Foundation Administrative Organization
    Inventors: Tsukasa Torimoto, Ken-ichi Okazaki, Tatsuya Kameyama, Takaaki Osaki, Susumu Kuwabata, Akihiko Kudo