Patents by Inventor Tsunenori Asatsuma

Tsunenori Asatsuma has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080176352
    Abstract: This semiconductor laser device has the same structure as the conventional broad-area type semiconductor laser device, except that both side regions of light emission areas of active and clad layers are two-dimensional-photonic-crystallized. The two-dimensional photonic crystal formed on both side regions of the light emission area is the crystal having the property that 780 nm laser light cannot be wave-guided in a resonator direction parallel to a striped ridge within the region. The light traveling in the direction can exist only in the light emission area sandwiched between two photonic crystal regions, which results in the light laterally confined by the photonic crystal region. The optical confinement of the region suppresses the loss in the light at both edges of the stripe serving as the boundary of the optical confinement, which reduces the curve of wave surface and uniforms the light intensity distributions of NFP and FFP.
    Type: Application
    Filed: April 26, 2007
    Publication date: July 24, 2008
    Applicant: Sony Corporation
    Inventors: Tsunenori Asatsuma, Shoji Hirata
  • Publication number: 20080049803
    Abstract: The present invention provides a Be-based group II-VI semiconductor laser using an InP substrate and having a stacked structure capable of continuous oscillation at a room temperature. A basic structure of a semiconductor laser is constituted by using a Be-containing lattice-matched II-VI semiconductor above an InP substrate. An active laser, an optical guide layer, and a cladding layer are constituted in a double hetero structure having a type I band line-up in order to enhance the injection efficiency of carriers to the active layer. Also, the active layer, the optical guide layer, and the cladding layer, which are capable of enhancing the optical confinement to the active layer, are constituted, and the cladding layer is constituted with bulk crystals.
    Type: Application
    Filed: July 30, 2007
    Publication date: February 28, 2008
    Inventors: Katsumi Kishino, Ichiro Nomura, Tsunenori Asatsuma, Hitoshi Nakamura, Tsukuru Ohtoshi, Takeshi Kikawa, Sumiko Fujisaki, Shigehisa Tanaka
  • Publication number: 20070217459
    Abstract: A semiconductor laser having an n-cladding layer, an optical guide layer, an active layer, an optical guide layer, and a p-cladding layer above an InP substrate, in which the active layer has a layer constituted with Be-containing group II-VI compound semiconductor mixed crystals, and at least one of layers of the n-cladding layer, the optical guide layer, and the p-cladding layer has a layer constituted with elements identical with those of the Be-containing group II-VI compound semiconductor mixed crystals of the active layer, and the layer is constituted with a superlattice structure comprising, as a well layer, mixed crystals of a Be compositions with the fluctuation of the composition being within ±30% compared with the Be composition of the group II-VI compound semiconductor mixed crystals of the active layer, whereby the device characteristics of the semiconductor laser comprising the Be-containing group II-VI compound semiconductor matched with the InP substrate.
    Type: Application
    Filed: March 20, 2007
    Publication date: September 20, 2007
    Inventors: Katsumi KISHINO, Ichiro NOMURA, Tsunenori ASATSUMA, Hitoshi NAKAMURA
  • Patent number: 7248612
    Abstract: This semiconductor laser device has the same structure as the conventional broad-area type semiconductor laser device, except that both side regions of light emission areas of active and clad layers are two-dimensional-photonic-crystallized. The two-dimensional photonic crystal formed on both side regions of the light emission area is the crystal having the property that 780 nm laser light cannot be wave-guided in a resonator direction parallel to a striped ridge within the region. The light traveling in the direction can exist only in the light emission area sandwiched between two photonic crystal regions, which results in the light laterally confined by the photonic crystal region. The optical confinement of the region suppresses the loss in the light at both edges of the stripe serving as the boundary of the optical confinement, which reduces the curve of wave surface and uniforms the light intensity distributions of NFP and FFP.
    Type: Grant
    Filed: November 7, 2003
    Date of Patent: July 24, 2007
    Assignee: Sony Corporation
    Inventors: Tsunenori Asatsuma, Shoji Hirata
  • Publication number: 20070117357
    Abstract: When a semiconductor light emitting device or a semiconductor device is manufactured by growing nitride III-V compound semiconductor layers, which will form a light emitting device structure or a device structure, on a nitride III-V compound semiconductor substrate composed of a first region in form of a crystal having a first average dislocation density and a plurality of second regions having a second average dislocation density higher than the first average dislocation density and periodically aligned in the first region, device regions are defined on the nitride III-V compound semiconductor substrate such that the device regions do not substantially include second regions, emission regions or active regions of devices finally obtained do not include second regions.
    Type: Application
    Filed: January 23, 2007
    Publication date: May 24, 2007
    Inventors: Tsunenori Asatsuma, Shigetaka Tomiya, Koshi Tamamura, Tsuyoshi Tojo, Osamu Goto, Kensaku Motoki
  • Patent number: 7176499
    Abstract: When a semiconductor light emitting device or a semiconductor device is manufactured by growing nitride III-V compound semiconductor layers, which will form a light emitting device structure or a device structure, on a nitride III-V compound semiconductor substrate composed of a first region in form of a crystal having a first average dislocation density and a plurality of second regions having a second average dislocation density higher than the first average dislocation density and periodically aligned in the first region, device regions are defined on the nitride III-V compound semiconductor substrate such that the device regions do not substantially include second regions, emission regions or active regions of devices finally obtained do not include second regions.
    Type: Grant
    Filed: November 21, 2003
    Date of Patent: February 13, 2007
    Assignees: Sony Corporation, Sumitomo Electric Industries, Ltd.
    Inventors: Tsunenori Asatsuma, Shigetaka Tomiya, Koshi Tamamura, Tsuyoshi Tojo, Osamu Goto, Kensaku Motoki
  • Patent number: 7091056
    Abstract: When a semiconductor light emitting device or a semiconductor device is manufactured by growing nitride III–V compound semiconductor layers, which will form a light emitting device structure or a device structure, on a nitride III–V compound semiconductor substrate composed of a first region in form of a crystal having a first average dislocation density and a plurality of second regions having a second average dislocation density higher than the first average dislocation density and periodically aligned in the first region, device regions are defined on the nitride III–V compound semiconductor substrate such that the device regions do not substantially include second regions, emission regions or active regions of devices finally obtained do not include second regions.
    Type: Grant
    Filed: June 9, 2005
    Date of Patent: August 15, 2006
    Assignees: Sony Corporation, Sumitomo Electric Industries, Ltd.
    Inventors: Tsunenori Asatsuma, Shigetaka Tomiya, Koshi Tamamura, Tsuyoshi Tojo, Osamu Goto, Kensaku Motoki
  • Publication number: 20050254538
    Abstract: A laser diode capable of effectively inhibiting effects of return light is provided. A laser diode includes a substrate, and a laminated structure including a first conductive semiconductor layer, an active layer having a light emitting region, and a second conductive semiconductor layer having a projecting part on the surface thereof, on the substrate, wherein a return light inhibition part is provided on a main-emitting-side end face, and effects of return light in the vicinity of lateral boundaries of the light emitting region are inhibited by the return light inhibition part.
    Type: Application
    Filed: May 6, 2005
    Publication date: November 17, 2005
    Applicant: Sony Corporation
    Inventors: Tsunenori Asatsuma, Yoshiro Takiguchi, Shoji Hirata
  • Publication number: 20050227392
    Abstract: When a semiconductor light emitting device or a semiconductor device is manufactured by growing nitride III-V compound semiconductor layers, which will form a light emitting device structure or a device structure, on a nitride III-V compound semiconductor substrate composed of a first region in form of a crystal having a first average dislocation density and a plurality of second regions having a second average dislocation density higher than the first average dislocation density and periodically aligned in the first region, device regions are defined on the nitride III-V compound semiconductor substrate such that the device regions do not substantially include second regions, emission regions or active regions of devices finally obtained do not include second regions.
    Type: Application
    Filed: June 9, 2005
    Publication date: October 13, 2005
    Inventors: Tsunenori Asatsuma, Shigetaka Tomiya, Koshi Tamamura, Tsuyoshi Tojo, Osamu Goto, Kensaku Motoki
  • Publication number: 20050145856
    Abstract: The present invention provides a gallium nitride semiconductor device including an electrode composed of a metallic film on an underlying gallium nitride compound semiconductor layer. The gallium nitride semiconductor device is characterized in that recessed portions are present dispersely over the whole surface area of the underlying compound semiconductor layer in contact with the electrode metallic film in such a manner that at least two recessed portions having a depth greater than the lattice constant of crystals constituting the underlying compound semiconductor layer are present on a width direction line in any 1 ?m width region of the whole surface area.
    Type: Application
    Filed: January 28, 2005
    Publication date: July 7, 2005
    Inventors: Tsunenori Asatsuma, Hiroshi Nakajima, Osamu Goto, Tsuyoshi Tojo
  • Publication number: 20040164308
    Abstract: When a semiconductor light emitting device or a semiconductor device is manufactured by growing nitride III-V compound semiconductor layers, which will form a light emitting device structure or a device structure, on a nitride III-V compound semiconductor substrate composed of a first region in form of a crystal having a first average dislocation density and a plurality of second regions having a second average dislocation density higher than the first average dislocation density and periodically aligned in the first region, device regions are defined on the nitride III-V compound semiconductor substrate such that the device regions do not substantially include second regions, emission regions or active regions of devices finally obtained do not include second regions.
    Type: Application
    Filed: November 21, 2003
    Publication date: August 26, 2004
    Inventors: Tsunenori Asatsuma, Shigetaka Tomiya, Koshi Tamamura, Tsuyoshi Tojo, Osamu Goto, Kensaku Motoki
  • Publication number: 20040101010
    Abstract: This semiconductor laser device has the same structure as the conventional broad-area type semiconductor laser device, except that both side regions of light emission areas of active and clad layers are two-dimensional-photonic-crystallized. The two-dimensional photonic crystal formed on both side regions of the light emission area is the crystal having the property that 780 nm laser light cannot be wave-guided in a resonator direction parallel to a striped ridge within the region. The light traveling in the direction can exist only in the light emission area sandwiched between two photonic crystal regions, which results in the light laterally confined by the photonic crystal region. The optical confinement of the region suppresses the loss in the light at both edges of the stripe serving as the boundary of the optical confinement, which reduces the curve of wave surface and uniforms the light intensity distributions of NFP and FFP.
    Type: Application
    Filed: November 7, 2003
    Publication date: May 27, 2004
    Inventors: Tsunenori Asatsuma, Shoji Hirata
  • Publication number: 20040056267
    Abstract: The present invention provides a gallium nitride semiconductor device including an electrode composed of a metallic film on an underlying gallium nitride compound semiconductor layer. The gallium nitride semiconductor device is characterized in that recessed portions are present dispersely over the whole surface area of the underlying compound semiconductor layer in contact with the electrode metallic film in such a manner that at least two recessed portions having a depth greater than the lattice constant of crystals constituting the underlying compound semiconductor layer are present on a width direction line in any 1 &mgr;m width region of the whole surface area.
    Type: Application
    Filed: May 27, 2003
    Publication date: March 25, 2004
    Inventors: Tsunenori Asatsuma, Hiroshi Nakajima, Osamu Goto, Tsuyoshi Tojo
  • Patent number: 6682991
    Abstract: When making a growth mask on a substrate and using the growth mask to selectively grow nitride III-V compound semiconductors on the substrate, a multi-layered film including a nitride forming at least its top surface is used as the growth mask. The growth mask may be combination of an oxide film and a nitride film thereon, combination of a metal film and a nitride film thereon, combination of an oxide film, a film thereon made up of a nitride and an oxide, and a nitride film thereon, or combination of a first metal film, a second metal film thereon different from the first metal film and a nitride film thereon, for example. The oxide film may be a Si02, for example, the nitride film may be a TiN film or a SiN film, the film made up of a nitride and an oxide may be a SiNO film, and the metal film may be a Ti film or a Pt film, for example.
    Type: Grant
    Filed: November 24, 1999
    Date of Patent: January 27, 2004
    Assignee: Sony Corporation
    Inventors: Tomonori Hino, Takeharu Asano, Tsunenori Asatsuma, Satoru Kijima, Kenji Funato, Shigetaka Tomiya
  • Patent number: 6620641
    Abstract: A GaN compound semiconductor laser includes an AlGaN buried layer which buries opposite sides of a ridge stripe portion formed on a p-type AlGaN cladding layer. The AlGaN buried layer is made by first patterning an upper part of the p-type AlGaN cladding layer and a p-type GaN contact layer into a ridge stripe configuration by using a SiO2 film as an etching mask, then growing the AlGaN buried layer non-selectively on the entire substrate surface to bury both sides of the ridge stripe portion under the existence of the SiO2 film on the ridge stripe portion, and thereafter selectively removing the AlGaN buried layer from above the ridge stripe portion by etching using the SiO2 film as an etching stop layer. Thus, the GaN compound semiconductor laser is stabilized in the transverse mode, intensified in output power, and improved in lifetime.
    Type: Grant
    Filed: June 17, 2002
    Date of Patent: September 16, 2003
    Assignee: Sony Corporation
    Inventors: Takashi Yamaguchi, Toshimasa Kobayashi, Satoru Kijima, Takashi Kobayashi, Tsunenori Asatsuma, Takeharu Asano, Tomonori Hino
  • Patent number: 6475820
    Abstract: The present invention provides a method for growing a semiconductor layer by which the size of generable voids is controllable, inclination of the c-axis of the semiconductor crystal is avoidable and the defects in the semiconductor layer is reducible, in which a first semiconductor layer typically made of GaN is formed in a ridge pattern on a substrate, and a second semiconductor layer typically comprising GaN is then formed on the first semiconductor layer under a condition by which the growth rate in the direction parallel to the major plane of the substrate is larger than that in the direction perpendicular thereto, which is attainable by controlling the pressure in a reaction chamber in which the vapor-phase growth proceeds at 53,200 Pa (400 Torr) or above, to allow the side planes of the second semiconductor layer incline at an acute angle to the bottom plane thereof.
    Type: Grant
    Filed: June 15, 2001
    Date of Patent: November 5, 2002
    Assignee: Sony Corporation
    Inventors: Hiroshi Nakajima, Shigeki Hashimoto, Tsunenori Asatsuma
  • Patent number: 6471769
    Abstract: When nitride series III-V group compound semiconductor is manufactured by gas phase growing using starting material for a group III element, ammonia as a starting material for a group V element and hydrogen, the gas phase molar ratio of hydrogen to the total amount of hydrogen and ammonia (H2/(H2+NH3)) is specified to 0.3<(H2/(H2+NH3))<0.7, 0.3<(H2/(H2+NH3))<0.6 or 0.4<(H2/(H2+NH3))<0.5. A nitride series III-V group compound semiconductor can thus be manufactured with less non-emission center and of excellent crystallinity.
    Type: Grant
    Filed: August 3, 1999
    Date of Patent: October 29, 2002
    Assignee: Sony Corporation
    Inventors: Shigeki Hashimoto, Katsunori Yanashima, Tsunenori Asatsuma, Masao Ikeda
  • Publication number: 20020153528
    Abstract: A GaN compound semiconductor laser includes an AlGaN buried layer which buries opposite sides of a ridge stripe portion formed on a p-type AlGaN cladding layer. The AlGaN buried layer is made by first patterning an upper part of the p-type AlGaN cladding layer and a p-type GaN contact layer into a ridge stripe configuration by using a SiO2 film as an etching mask, then growing the AlGaN buried layer non-selectively on the entire substrate surface to bury both sides of the ridge stripe portion under the existence of the SiO2 film on the ridge stripe portion, and thereafter selectively removing the AlGaN buried layer from above the ridge stripe portion by etching using the SiO2 film as an etching stop layer. Thus, the GaN compound semiconductor laser is stabilized in the transverse mode, intensified in output power, and improved in lifetime.
    Type: Application
    Filed: June 17, 2002
    Publication date: October 24, 2002
    Inventors: Takashi Yamaguchi, Toshimasa Kobayashi, Satoru Kijima, Takashi Kobayashi, Tsunenori Asatsuma, Takeharu Asano, Tomonori Hino
  • Patent number: 6413312
    Abstract: A new and improved method for growing a p-type nitride III-V compound semiconductor is provided which can produce a p-type nitride compound semiconductors having a high carrier concentration, without the need for annealing to activate impurities after growth. In a preferred embodiment, a p-type nitride compound semiconductor, such as p-type GaN, is grown by metal organic chemical vapor deposition methods using a nitrogen source material which does not release hydrogen during release of nitrogen and the semiconductor is grown in an inactive gas. The nitrogen source materials may be selected from nitrogen compounds that contain hydrogen radicals and alkyl radicals and/or phenyl radicals provided that the total amount of hydrogen radicals is less than or equal to the sum total of alkyl radicals and phenyl radicals present in the nitrogen compound used as the nitrogen source material.
    Type: Grant
    Filed: January 3, 2000
    Date of Patent: July 2, 2002
    Assignee: Sony Corporation
    Inventors: Hiroji Kawai, Tsunenori Asatsuma, Fumihiko Nakamura
  • Patent number: RE38613
    Abstract: A new and improved method for growing a p-type nitride III-V compound semiconductor is provided which can produce a p-type nitride compound semiconductors having a high carrier concentration, without the need for annealing to activate impurities after growth. In a preferred embodiment, a p-type nitride compound semiconductor, such as p-type GaN, is grown by metal organic chemical vapor deposition methods using a nitrogen source material which does not release hydrogen during release of nitrogen and the semiconductor is grown in an inactive gas. The nitrogen source materials may be selected from nitrogen compounds that contain hydrogen radicals groups and alkyl radicals groups and/or phenyl radicals groups provided that the total amount of hydrogen radicals groups is less than or equal to the sum total of alkyl radicals groups and phenyl radicals groups present in the nitrogen compound used as the nitrogen source material.
    Type: Grant
    Filed: September 18, 2002
    Date of Patent: October 5, 2004
    Assignee: Sony Corporation
    Inventors: Hiroji Kawai, Tsunenori Asatsuma, Fumihiko Nakamura