Patents by Inventor Tsung-De Lin
Tsung-De Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20100012996Abstract: A dynamic random access memory structure comprises a substrate having a first diffusion region and a second diffusion region, a dielectric structure overlaying the substrate, a capacitor contact plug disposed in the dielectric structure and connected to the first diffusion region, a bit-line contact plug disposed in the dielectric structure and connected to the second diffusion region, a metal silicide disposed on the capacitor contact plug, and a capacitive structure disposed on the dielectric structure and connected to the metal silicide.Type: ApplicationFiled: July 16, 2008Publication date: January 21, 2010Applicant: PROMOS TECHNOLOGIES INC.Inventor: TSUNG DE LIN
-
Patent number: 7635626Abstract: A method of manufacturing a DRAM includes firstly providing a substrate. Many transistors are then formed on the substrate. Next, a first and a second LPCs are formed between the transistors. A first dielectric layer is then formed on the substrate, and a first opening exposing the first LPC is formed in the first dielectric layer. Thereafter, a barrier layer is formed on the first dielectric layer. Afterwards, a BLC is formed in the first opening, and a BL is formed on the first dielectric layer. A liner layer is then formed on a sidewall of the BL. Next, a second dielectric layer having a dry etching rate substantially equal to that of the liner layer and having a wet etching rate larger than that of the liner layer is formed on the substrate. Finally, an SNC is formed in the first and the second dielectric layers.Type: GrantFiled: June 22, 2007Date of Patent: December 22, 2009Assignee: ProMos Technologies Inc.Inventors: Cheng-Che Lee, Tao-Yi Chang, Tsung-De Lin
-
Patent number: 7592219Abstract: A method of fabricating a capacitor over bit line (COB) is provided. First, a substrate is provided and a plurality of word lines is formed on the substrate. Next, a plurality of landing plug contacts (LPCs) are formed between the word lines and a plurality of first contacts is then formed on the LPCs. Thereafter, a plurality of second contacts is formed on a first portions of the first contacts and a plurality of bit lines connecting a second portions of the first contacts is formed, simultaneously. An inter-layer dielectric (ILD) layer is formed on the substrate to cover the second contacts and the bit lines. Subsequently, a plurality of capacitors is formed in the ILD layer. Thus, the fabrication of the capacitor is simplified.Type: GrantFiled: January 18, 2007Date of Patent: September 22, 2009Assignee: ProMOS Technologies Inc.Inventors: Tsung-De Lin, Cheng-Che Lee
-
Publication number: 20080274602Abstract: A method of manufacturing a DRAM includes firstly providing a substrate. Many transistors are then formed on the substrate. Next, a first and a second LPCs are formed between the transistors. A first dielectric layer is then formed on the substrate, and a first opening exposing the first LPC is formed in the first dielectric layer. Thereafter, a barrier layer is formed on the first dielectric layer. Afterwards, a BLC is formed in the first opening, and a BL is formed on the first dielectric layer. A liner layer is then formed on a sidewall of the BL. Next, a second dielectric layer having a dry etching rate substantially equal to that of the liner layer and having a wet etching rate larger than that of the liner layer is formed on the substrate. Finally, an SNC is formed in the first and the second dielectric layers.Type: ApplicationFiled: June 22, 2007Publication date: November 6, 2008Inventors: Cheng-Che Lee, Tao-Yi Chang, Tsung-De Lin
-
Publication number: 20080124885Abstract: A method of fabricating an electrode of a capacitor is provided. A substrate is provided and a dielectric layer is then formed thereon. After that, one multilayer mask is formed on the dielectric layer to expose a portion of the dielectric layer, wherein the multilayer mask consists of at least two layers of materials having different etching rates respectively. The exposed dielectric layer is removed to form a trench, and then the dielectric layer is over-etched, so as to widen the inside diameter of the trench. Thereafter, a conductive layer is formed on the substrate, and thus the multilayer mask and a surface of the trench are covered with the conductive layer. The conductive layer except that in the trench is then removed so as to form the electrode of the capacitor. Therefore, it can prevent the conductive layer from generating more loss.Type: ApplicationFiled: January 18, 2007Publication date: May 29, 2008Applicant: PROMOS TECHNOLOGIES INC.Inventors: Tsung-De Lin, Cheng-Che Lee
-
Publication number: 20080124886Abstract: A method of fabricating a capacitor over bit line (COB) is provided. First, a substrate is provided and a plurality of word lines is formed on the substrate. Next, a plurality of landing plug contacts (LPCs) are formed between the word lines and a plurality of first contacts is then formed on the LPCs. Thereafter, a plurality of second contacts is formed on a first portions of the first contacts and a plurality of bit lines connecting a second portions of the first contacts is formed, simultaneously. An inter-layer dielectric (ILD) layer is formed on the substrate to cover the second contacts and the bit lines. Subsequently, a plurality of capacitors is formed in the ILD layer. Thus, the fabrication of the capacitor is simplified.Type: ApplicationFiled: January 18, 2007Publication date: May 29, 2008Applicant: PROMOS TECHNOLOGIES INC.Inventors: Tsung-De Lin, Cheng-Che Lee
-
Patent number: 7026171Abstract: A rapid thermal annealing (“RTA”) process providing for an RTA equipment is disclosed. The RTA equipment has a pyrometer providing for measuring an operation parameter, e.g., a temperature of the RTA process. The RTA process comprises steps of proceeding a first RTA step to a wafer in the RTA equipment, then comparing a measured value of the operation parameter with a reference range of value of the operation parameter, thereafter proceeding a second RTA step to the wafer in the RTA equipment when the measured value of the operation parameter is in between the reference range of value of the operation parameter. When the measured value of the operation parameter is out of the reference range of value of the operation parameter, the RTA equipment is turned off, and the wafer is unloaded from the RTA equipment and loaded into another RTA equipment to complete the RTA process.Type: GrantFiled: July 4, 2003Date of Patent: April 11, 2006Assignee: Macronix International Co., Ltd.Inventors: Y. Y. Chang, Shih-Liang Chou, L. H. Lee, Tsung-De Lin, Kou-Yow Tseng, Wen-Cheng Lien
-
Patent number: 6828208Abstract: A method of fabricating a shallow trench isolation (STI) structure. A substrate is provided and then a pad oxide layer, a mask layer and a first trench are sequentially formed on the substrate. An insulation layer is formed inside the first trench and over the substrate. The insulation layer has a second trench in a location above the first trench. Thereafter, a conformal cap layer is formed over the insulation layer. The cap layer has a third trench in a location above the second trench. A reverse mask is formed over the cap layer covering the third trench. The cap layer and the insulation layer outside the reverse mask are removed to expose the upper surface of the mask layer. The reverse mask is removed and then the residual insulation layer outside the remaining cap layer and the trench are moved to expose the upper surface of the mask layer. Finally, the mask layer and the pad oxide layer are removed.Type: GrantFiled: January 28, 2003Date of Patent: December 7, 2004Assignee: Macronix International Co., Ltd.Inventors: Tsung-De Lin, Hsiao-Kang Wang, Tian-Jue Hong, Shih-Liang Chou, Wen-Cheng Lien
-
Publication number: 20040224538Abstract: A rapid thermal annealing (“RTA”) process providing for an RTA equipment is disclosed. The RTA equipment has a pyrometer providing for measuring an operation parameter, e.g., a temperature of the RTA process. The RTA process comprises steps of proceeding a first RTA step to a wafer in the RTA equipment, then comparing a measured value of the operation parameter with a reference range of value of the operation parameter, thereafter proceeding a second RTA step to the wafer in the RTA equipment when the measured value of the operation parameter is in between the reference range of value of the operation parameter. When the measured value of the operation parameter is out of the reference range of value of the operation parameter, the RTA equipment is turned off, and the wafer is unloaded from the RTA equipment and loaded into another RTA equipment to complete the RTA process.Type: ApplicationFiled: July 4, 2003Publication date: November 11, 2004Inventors: Y. Y. Chang, Shih-Liang Chou, L. H. Lee, Tsung-De Lin, Kou-Yow Tseng, Wen-Cheng Lien
-
Publication number: 20040147135Abstract: A method of fabricating a shallow trench isolation (STI) structure. A substrate is provided and then a pad oxide layer, a mask layer and a first trench are sequentially formed on the substrate. An insulation layer is formed inside the first trench and over the substrate. The insulation layer has a second trench in a location above the first trench. Thereafter, a conformal cap layer is formed over the insulation layer. The cap layer has a third trench in a location above the second trench. A reverse mask is formed over the cap layer covering the third trench. The cap layer and the insulation layer outside the reverse mask are removed to expose the upper surface of the mask layer. The reverse mask is removed and then the residual insulation layer outside the remaining cap layer and the trench are moved to expose the upper surface of the mask layer. Finally, the mask layer and the pad oxide layer are removed.Type: ApplicationFiled: January 28, 2003Publication date: July 29, 2004Inventors: Tsung-De Lin, Hsiao-Kang Wang, Tian-Jue Hong, Shih-Liang Chou, Wen-Cheng Lien
-
Publication number: 20040146643Abstract: A method of determining the deposition temperature, especially inside the reaction chamber of a chemical vapor deposition station. The method includes placing a deposition substrate inside the reaction chamber, forming a layer of metal silicide over the deposition substrate, measuring the silicon/metal atomic ratio and finding the deposition temperature according to a pre-determined temperature versus silicon/metal atomic ratio relationship. The method permits immediate determination as well as real-time monitoring of deposition temperature inside the station.Type: ApplicationFiled: January 24, 2003Publication date: July 29, 2004Inventors: Shih-Liang Chou, Tsung-Chin Wu, Tsung-De Lin, Tian-Jue Hong, Kou-Yow Tseng, Wen-Cheng Lien