Patents by Inventor Tsung-Hsien Chang

Tsung-Hsien Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11980040
    Abstract: A semiconductor device includes a substrate; a memory array over the substrate, the memory array including first magnetic tunnel junctions (MTJs), where the first MTJs are in a first dielectric layer over the substrate; and a resistor circuit over the substrate, the resistor circuit including second MTJs, where the second MTJs are in the first dielectric layer.
    Type: Grant
    Filed: June 14, 2021
    Date of Patent: May 7, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tai-Yen Peng, Tsung-Hsien Chang, Yu-Shu Chen, Chih-Yuan Ting, Jyu-Horng Shieh, Chung-Te Lin
  • Publication number: 20240146288
    Abstract: A system includes a measuring device, a processing device and a signal generating device. The measuring device is configured to measure a voltage difference between a first node and a second node. The processing device is coupled between the first node and the second node. The signal generating device is configured to provide a first clock signal to the processing device to adjust the voltage difference, configured to generate the first clock signal according to a first enable signal and a second clock signal, and configured to align an edge of the first enable signal with an edge of the second clock signal. A method and a device are also disclosed herein.
    Type: Application
    Filed: January 11, 2024
    Publication date: May 2, 2024
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tsung-Che LU, Chin-Ming FU, Chih-Hsien CHANG
  • Patent number: 11961580
    Abstract: A sense amplifier includes a first pair of transistors having gate terminals respectively coupled to a first input terminal for receiving a first input signal and to a second input terminal for receiving a second input signal, source terminals coupled to a first power supply terminal, and drain terminals. The sense amplifier also includes a second pair of transistors having gate terminals coupled to a clock terminal, source terminals respectively coupled to the drain terminals of the first pair of transistors, and drain terminals. The sense amplifier also includes a third pair of transistors having gate terminals coupled to the clock terminal, drain terminals respectively coupled to the drain terminals of the second pair of transistors, and source terminals coupled to a second power supply terminal. In addition, the sense amplifier includes an output circuit coupled to the drain terminals of the second pair of transistors and having an output terminal.
    Type: Grant
    Filed: June 1, 2022
    Date of Patent: April 16, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tsung-Che Lu, Chin-Ming Fu, Chih-Hsien Chang
  • Publication number: 20240085941
    Abstract: An impedance measurement circuit and an operating method thereof are provided. The impedance measurement circuit includes a current source, a voltage controlled oscillator (VCO), an operation circuit, and a first delay circuit. The current source, electrically connected to a power rail, is able to sink a current from the power rail according to the delayed clock signal. The VCO is configured to generate an oscillation signal according to a power voltage on the power rail. The operation circuit is electrically connected to the VCO and is configured to receive a sampling clock signal and the oscillation signal, sense the power voltage to generate a sampled signal, and accumulate the sampled signal to generate a measurement result. The first delay circuit, electrically connected to the current source and the operation circuit, is able to receive the sampling clock signal and transmit the delayed clock signal to the current source.
    Type: Application
    Filed: November 22, 2023
    Publication date: March 14, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tsung-Che Lu, Chin-Ming Fu, Chih-Hsien Chang
  • Patent number: 11928247
    Abstract: An encryption and signature device for AI model protection is provided. The encryption and signature device for AI model protection includes a key derivation unit, a model encryption unit, a model password encryption unit, an image generation unit and a signature unit. The key derivation unit is configured to derive a model key according to a model password and a derivation function. The model encryption unit is configured to encrypt an AI model according to the model key to generate an encrypted AI model. The model password encryption unit is configured to encrypt the model password to generate an encrypted model password. The image generation unit is configured to generate an image file according to the encrypted model password and the encrypted AI model. The signature unit is configured to sign the image file according to a private key to obtain a signed image file.
    Type: Grant
    Filed: November 1, 2021
    Date of Patent: March 12, 2024
    Assignee: CVITEK CO. LTD.
    Inventors: Tsung-Hsien Lin, Jen-Shi Wu, Hsiao-Ming Chang
  • Publication number: 20230364733
    Abstract: A chemical mechanical planarization apparatus includes a multi-zone platen comprising a plurality of individually controlled concentric toroids. The rotation direction, rotation speed, applied force, relative height, and temperature of each concentric toroid is individually controlled. Concentric polishing pads are affixed to an upper surface of each of the individually controlled concentric toroids. The chemical mechanical planarization apparatus includes a single central slurry source or includes individual slurry sources for each individually controlled concentric toroid.
    Type: Application
    Filed: July 26, 2023
    Publication date: November 16, 2023
    Inventors: Ting-Hsun Chang, Hung Yen, Chi-Hsiang Shen, Fu-Ming Huang, Chun-Chieh Lin, Tsung Hsien Chang, Ji Cui, Liang-Guang Chen, Chih Hung Chen, Kei-Wei Chen
  • Patent number: 11772228
    Abstract: A chemical mechanical planarization apparatus includes a multi-zone platen comprising a plurality of individually controlled concentric toroids. The rotation direction, rotation speed, applied force, relative height, and temperature of each concentric toroid is individually controlled. Concentric polishing pads are affixed to an upper surface of each of the individually controlled concentric toroids. The chemical mechanical planarization apparatus includes a single central slurry source or includes individual slurry sources for each individually controlled concentric toroid.
    Type: Grant
    Filed: January 17, 2020
    Date of Patent: October 3, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ting-Hsun Chang, Hung Yen, Chi-Hsiang Shen, Fu-Ming Huang, Chun-Chieh Lin, Tsung Hsien Chang, Ji Cui, Liang-Guang Chen, Chih Hung Chen, Kei-Wei Chen
  • Publication number: 20210313396
    Abstract: A semiconductor device includes a substrate; a memory array over the substrate, the memory array including first magnetic tunnel junctions (MTJs), where the first MTJs are in a first dielectric layer over the substrate; and a resistor circuit over the substrate, the resistor circuit including second MTJs, where the second MTJs are in the first dielectric layer.
    Type: Application
    Filed: June 14, 2021
    Publication date: October 7, 2021
    Inventors: Tai-Yen Peng, Tsung-Hsien Chang, Yu-Shu Chen, Chih-Yuan Ting, Jyu-Horng Shieh, Chung-Te Lin
  • Publication number: 20210220964
    Abstract: A chemical mechanical planarization apparatus includes a multi-zone platen comprising a plurality of individually controlled concentric toroids. The rotation direction, rotation speed, applied force, relative height, and temperature of each concentric toroid is individually controlled. Concentric polishing pads are affixed to an upper surface of each of the individually controlled concentric toroids. The chemical mechanical planarization apparatus includes a single central slurry source or includes individual slurry sources for each individually controlled concentric toroid.
    Type: Application
    Filed: January 17, 2020
    Publication date: July 22, 2021
    Inventors: Ting-Hsun Chang, Hung Yen, Chi-Hsiang Shen, Fu-Ming Huang, Chun-Chieh Lin, Tsung Hsien Chang, Ji Cui, Liang-Guang Chen, Chih Hung Chen, Kei-Wei Chen
  • Patent number: 11037981
    Abstract: A semiconductor device includes a substrate; a memory array over the substrate, the memory array including first magnetic tunnel junctions (MTJs), where the first MTJs are in a first dielectric layer over the substrate; and a resistor circuit over the substrate, the resistor circuit including second MTJs, where the second MTJs are in the first dielectric layer.
    Type: Grant
    Filed: September 4, 2019
    Date of Patent: June 15, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tai-Yen Peng, Tsung-Hsien Chang, Yu-Shu Chen, Chih-Yuan Ting, Jyu-Horng Shieh, Chung-Te Lin
  • Publication number: 20200135806
    Abstract: A semiconductor device includes a substrate; a memory array over the substrate, the memory array including first magnetic tunnel junctions (MTJs), where the first MTJs are in a first dielectric layer over the substrate; and a resistor circuit over the substrate, the resistor circuit including second MTJs, where the second MTJs are in the first dielectric layer.
    Type: Application
    Filed: September 4, 2019
    Publication date: April 30, 2020
    Inventors: Tai-Yen Peng, Tsung-Hsien Chang, Yu-Shu Chen, Chih-Yuan Ting, Jyu-Horng Shieh, Chung-Te Lin
  • Publication number: 20070224808
    Abstract: A silicided gate for CMOS transistors and a method of manufacture is provided. A gate electrode is formed on a substrate. A first dielectric layer is formed over the gate electrode and the substrate, and a second dielectric layer is formed over the first dielectric layer. The second dielectric layer is etched to form spacers adjacent the gate electrode. A treatment is performed on the first dielectric layer over the gate electrode, wherein the treatment increases the effective etch rate of the first dielectric layer as compared to untreated portions of the first dielectric layer. An etching procedure is then performed to expose the surface of the gate electrode, the etching procedure recessing the liner along sidewalls of the gate electrode. Thereafter, a silicide procedure is performed to silicide at least a portion of the gate electrode.
    Type: Application
    Filed: March 23, 2006
    Publication date: September 27, 2007
    Inventors: Tsung-Hsien Chang, Tung-Heng Hsieh, Chung-Cheng Wu, Shou Chang