Patents by Inventor Tsurugi SAMEZAWA

Tsurugi SAMEZAWA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11469366
    Abstract: An object of the present invention is to improve the piezoelectricity of a PVT having the VDF ratio of 82 to 90% represented by a copolymer, in which copolymerization of vinylidene fluoride VDF and trifluoroethylene TrFe is 85 versus 15 (this is written as PVT85/15, and which is excellent in resistance to deformation, and heat resistance, etc. And therefore, it is also to obtain a piezoelectric film having piezoelectricity exceeding a PVT of less than 82 mol % of VDF represented by a PVT75/25, which conventionally shows the highest piezoelectricity, and a method of producing the same. A piezoelectric film is made of a mixture of two kinds (for example, a first copolymer is PVT85/15 and a second copolymer is PVT75/25) having different polymerization ratios of vinylidene fluoride VDF and trifluoroethylene TrFE.
    Type: Grant
    Filed: January 10, 2018
    Date of Patent: October 11, 2022
    Inventors: Kenji Omote, Tsurugi Samezawa, Hiroji Ohigashi
  • Publication number: 20210135089
    Abstract: An object of the present invention is to improve the piezoelectricity of a PVT having the VDF ratio of 82 to 90% represented by a copolymer, in which copolymerization of vinylidene fluoride VDF and trifluoroethylene TrFe is 85 versus 15 (this is written as PVT85/15, and which is excellent in resistance to deformation, and heat resistance, etc. And therefore, it is also to obtain a piezoelectric film having piezoelectricity exceeding a PVT of less than 82 mol % of VDF represented by a PVT75/25, which conventionally shows the highest piezoelectricity, and a method of producing the same. A piezoelectric film is made of a mixture of two kinds (for example, a first copolymer is PVT85/15 and a second copolymer is PVT75/25) having different polymerization ratios of vinylidene fluoride VDF and trifluoroethylene TrFE.
    Type: Application
    Filed: October 1, 2018
    Publication date: May 6, 2021
    Inventors: Kenji OMOTE, Tsurugi SAMEZAWA, Hiroji OHIGASHI
  • Patent number: 10535811
    Abstract: A piezoelectric film which is better in heat and deformation resistant properties than those in the prior art is provided along with a method of manufacture. The film is a piezoelectric film that is composed of a copolymer of vinylidene fluoride and trifluoroethylene, the copolymer having a content of vinylidene fluoride in a range of not less than 82 mol % and not more than 86 mol % and having a molecular weight not less than 600,000. The piezoelectric film is subjected to a heat treatment for crystallization of the copolymer at a temperature ranging from not less than 140° C. to not more than 150° C., and is thereby caused to develop piezoelectric property. The piezoelectric film further has a heat resistance of not less than 140° C. and a breaking distortion of not less than 8% and not more than 55%, and an excellent deformation resistant property.
    Type: Grant
    Filed: April 1, 2016
    Date of Patent: January 14, 2020
    Assignee: IDEAL STAR INC.
    Inventors: Kenji Omote, Tsurugi Samezawa, Hiroji Ohigashi
  • Publication number: 20180097171
    Abstract: A piezoelectric film which is better in heat and deformation resistant properties than those in the prior art is provided along with a method of manufacture. The film is a piezoelectric film that is composed of a copolymer of vinylidene fluoride and trifluoroethylene, the copolymer having a content of vinylidene fluoride in a range of not less than 82 mol % and not more than 86 mol % and having a molecular weight not less than 600,000. The piezoelectric film is subjected to a heat treatment for crystallization of the copolymer at a temperature ranging from not less than 140° C. to not more than 150° C., and is thereby caused to develop piezoelectric property. The piezoelectric film further has a heat resistance of not less than 140° C. and a breaking distortion of not less than 8% and not more than 55%, and an excellent deformation resistant property.
    Type: Application
    Filed: April 1, 2016
    Publication date: April 5, 2018
    Inventors: Kenji OMOTE, Tsurugi SAMEZAWA, Hiroji OHIGASHI