Patents by Inventor Tsutomu Kitoh

Tsutomu Kitoh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7580597
    Abstract: The present invention provides an optical functional circuit where a holographic wave propagation medium is applied and a circuit property is excellent such as small transmission loss and crosstalk. The optical functional circuit where a plurality of circuit elements are formed on a substrate includes the wave propagation medium for converting an optical path of a leakage light so that the leakage light that is not emitted from a predetermined output port of the circuit element is not coupled to a different circuit element. This wave propagation medium is constituted by an optical waveguide that is provided with a clad layer formed on the substrate and a core embedded in the clad layer, and a part of the optical waveguide is formed in accordance with a refractive index distribution which is multiple scattered.
    Type: Grant
    Filed: July 1, 2005
    Date of Patent: August 25, 2009
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Tsutomu Kitoh, Yohei Sakamaki, Toshikazu Hashimoto, Takashi Saida, Hiroshi Takahashi, Masahiro Yanagisawa, Ikuo Ogawa, Tomohiro Shibata, Senichi Suzuki
  • Publication number: 20080273829
    Abstract: A planar lightwave circuit is provided which can be easily fabricated by an existing planar-lightwave-circuit fabrication process, which can lower the propagation loss of signal light and which can convert inputted signal light so as to derive desired signal light. A planar lightwave circuit having a core and a clad which are formed on a substrate, has input optical waveguide(s) (111) which inputs signal light, mode coupling part (112) for coupling a fundamental mode of the inputted signal light to a higher-order mode and/or a radiation mode, or mode re-coupling part (113) for re-coupling the higher-order mode and/or the radiation mode to the fundamental mode, and output optical waveguide(s) (114) which outputs signal light. The mode coupling part or the mode re-coupling part is an optical waveguide which has core width and/or height varied continuously.
    Type: Application
    Filed: August 1, 2005
    Publication date: November 6, 2008
    Applicant: Nippon Telegraph and Telephone Corporation
    Inventors: Takashi Saida, Yohei Sakamaki, Toshikazu Hashimoto, Tsutomu Kitoh, Hiroshi Takahashi, Masahiro Yanagisawa, Senichi Suzuki, Yasuhiro Hida, Motohaya Ishii, Munehisa Tamura
  • Publication number: 20080232736
    Abstract: The present invention provides an optical functional circuit where a holographic wave propagation medium is applied and a circuit property is excellent such as small transmission loss and crosstalk. The optical functional circuit where a plurality of circuit elements are formed on a substrate includes the wave propagation medium for converting an optical path of a leakage light so that the leakage light that is not emitted from a predetermined output port of the circuit element is not coupled to a different circuit element. This wave propagation medium is constituted by an optical waveguide that is provided with a clad layer formed on the substrate and a core embedded in the clad layer, and a part of the optical waveguide is formed in accordance with a refractive index distribution which is multiple scattered.
    Type: Application
    Filed: July 1, 2005
    Publication date: September 25, 2008
    Applicant: Nippon Telegraph and Telephone Corporation
    Inventors: Tsutomu Kitoh, Yohei Sakamaki, Toshikazu Hashimoto, Takashi Saida, Hiroshi Takahashi, Masahiro Yanagisawa, Ikuo Ogawa, Tomohiro Shibata, Senichi Suzuki
  • Patent number: 7400800
    Abstract: An arrayed waveguide grating type optical multiplexer/demultiplexer circuit in which wavelength dispersion is reduced. An input wave guide (1), a first slab waveguide (2), an arrayed waveguide (3), a second slab waveguide (4) and an output waveguide (5) are connected sequentially. Furthermore, a parabola waveguide (6) is provided between the input waveguide (1) and the first slab waveguide (2), and a taper waveguide (7) is provided between the second slab waveguide (4) and the output waveguide (5). A parabola waveguide length Z0 exists in a range Za,0=Z0=Zp,0 determined by a parabola waveguide length Za,0 where the ratio of absolute amplitude between the main peak and the first side peak in the field distribution of far-field of the parabola waveguide (6) has an upper limit of 0.217, and a parabola waveguide length Zp,0 where the relative phase of the main peak and the first side peak in the field distribution of far-field has a lower limit of 3.14 radian.
    Type: Grant
    Filed: December 26, 2003
    Date of Patent: July 15, 2008
    Assignees: NTT Electronics Corporation, Nippon Telegraph & Telephone Corporation
    Inventors: Tsutomu Kitoh, Yasuyuki Inoue, Mikitaka Ito, Yoshinori Hibino, Akimasa Kaneko
  • Patent number: 7397977
    Abstract: A wave transmission medium includes an input port 3-1 and an output port 3-2. A field distribution 1 and a field distribution 2 are obtained by numerical calculations. The field distribution 1 is a field distribution of the propagation light (forward propagation light) launched into the input port 3-1. The field distribution 2 is a field distribution of the phase conjugate light (reverse propagation light) resulting from reversely transmitting from the output port side an output field that is expected to be output from the output port 3-2 when an optical signal is launched into the input port 3-1. According to the field distributions 1 and 2, a spatial refractive index distribution is calculated such that the phase difference between the propagation light and reverse propagation light is eliminated at individual points (x, z) in the medium.
    Type: Grant
    Filed: December 25, 2003
    Date of Patent: July 8, 2008
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Toshikazu Hashimoto, Ikuo Ogawa, Takeshi Kitagawa, Senichi Suzuki, Masahiro Yanagisawa, Tomohiro Shibata, Masaki Koutoku, Hiroshi Takahashi, Ryou Nagase, Masaru Kobayashi, Shuichiro Asakawa, Yoshiteru Abe, Tsutomu Kitoh, Takaharu Ohyama
  • Publication number: 20060233491
    Abstract: An arrayed waveguide grating type optical multiplexer/demultiplexer circuit in which wavelength dispersion is reduced. An input wave guide (1), a first slab waveguide (2), an arrayed waveguide (3), a second slab waveguide (4) and an output waveguide (5) are connected sequentially. Furthermore, a parabola waveguide (6)is provided between the input waveguide (1) and the first slab waveguide (2), and a taper waveguide (7) is provided between the second slab waveguide (4) and the output waveguide (5). A parabola waveguide length Z0 exists in a range Za,0=Z0=Zp,0 determined by a parabola waveguide length Za,0 where the ratio of absolute amplitude between the main peak and the first side peak in the field distribution of far-field of the parabola waveguide (6) has an upper limit of 0.217, and a parabola waveguide length Zp,0 where the relative phase of the main peak and the first side peak in the field distribution of far-field has a lower limit of 3.14 radian.
    Type: Application
    Filed: December 26, 2003
    Publication date: October 19, 2006
    Inventors: Tsutomu Kitoh, Yasuyuki Inoue, Mikitaka Ito
  • Patent number: 7085438
    Abstract: An optical multi/demultiplexing circuit includes at least one phase generating optical coupler and an optical delay line coupled to the phase generating optical coupler. The phase generating optical coupler consists of at least one input and at least two outputs. At least one of the phase generating optical coupler has a wavelength dependent or frequency dependent output phase difference in the passband of the circuit so that it can change the transmittance characteristics of the optical multi/demultiplexing circuit.
    Type: Grant
    Filed: December 3, 2003
    Date of Patent: August 1, 2006
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Takayuki Mizuno, Tsutomu Kitoh, Manabu Oguma, Yasuyuki Inoue
  • Publication number: 20060126992
    Abstract: A wave transmission medium includes an input port 3-1 and an output port 3-2. A field distribution 1 and a field distribution 2 are obtained by numerical calculations. The field distribution 1 is a field distribution of the propagation light (forward propagation light) launched into the input port 3-1. The field distribution 2 is a field distribution of the phase conjugate light (reverse propagation light) resulting from reversely transmitting from the output port side an output field that is expected to be output from the output port 3-2 when an optical signal is launched into the input port 3-1. According to the field distributions 1 and 2, a spatial refractive index distribution is calculated such that the phase difference between the propagation light and reverse propagation light is eliminated at individual points (x, z) in the medium.
    Type: Application
    Filed: December 25, 2003
    Publication date: June 15, 2006
    Inventors: Toshikazu Hashimoto, Ikuo Ogawa, Takeshi Kitagawa, Senichi Suzuki, Masahiro Yanagisawa, Tomohiro Shibata, Masaki Koutoku, Hiroshi Takahashi, Ryou Nagase, Masaru Kobayashi, Shuichiro Asakawa, Yoshiteru Abe, Tsutomu Kitoh, Takaharu Ohyama
  • Publication number: 20060072866
    Abstract: The present invention discloses an interferometer optical switch that can carry out switching over a broad band and has a high extinction ratio and large fabrication tolerance. The interferometer optical switch employs a phase generating coupler, the phase difference of the output of which has wavelength dependence, as at least one of the optical multi/demultiplexing device included in the interferometer optical switch. A wavelength insensitive interferometer optical switch is implemented by making the sum 2?{?1(?)+??L(?)+?2(?)} constant regardless of the wavelength, where ?1(?) is the phase produced by the first optical multi/demultiplexing device, 2???L(?) is the phase difference of the optical delay line with an optical path length difference of ?L, and 2??2(?) is the phase produced by the second optical multi/demultiplexing device.
    Type: Application
    Filed: July 2, 2004
    Publication date: April 6, 2006
    Inventors: Takayuki Mizuno, Hiroshi Takahashi, Tsutomu Kitoh, Manabu Oguma, Shunichi Souma
  • Patent number: 6937797
    Abstract: A planar lightwave circuit is provided. The planar lightwave circuit includes a waveguide and a spotsize converter which is a part of the waveguide, wherein a core is embedded in a cladding in the waveguide, and the spotsize converter is located near an end face of a substrate on which the planar lightwave circuit is formed, the spotsize converter including: a core width fine-tuning part in an end face side of the substrate; and a core width converting part which follows the core width fine-tuning part; wherein core width of the spotsize converter is minimum at an end face of the substrate, a mean taper angle ?1 of the core width fine-tuning part is larger than 0° and smaller than a mean taper angle ?2 of the core width converting part.
    Type: Grant
    Filed: September 13, 2001
    Date of Patent: August 30, 2005
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Takayuki Mizuno, Tsutomu Kitoh, Yasuyuki Inoue, Yoshinori Hibino, Mikitaka Itoh, Takashi Saida, Yasuhiro Hida
  • Publication number: 20040136647
    Abstract: An optical multi/demultiplexing circuit includes at least one phase generating optical coupler and an optical delay line coupled to the phase generating optical coupler. The phase generating optical coupler consists of at least one input and at least two outputs. At least one of the phase generating optical coupler has a wavelength dependent or frequency dependent output phase difference in the passband of the circuit so that it can change the transmittance characteristics of the optical multi/demultiplexing circuit.
    Type: Application
    Filed: December 3, 2003
    Publication date: July 15, 2004
    Applicant: Nippon Telegraph and Telephone Corporation
    Inventors: Takayuki Mizuno, Tsutomu Kitoh, Manabu Oguma, Yasuyuki Inoue
  • Patent number: 6735358
    Abstract: The present invention provides an optical demultiplexer and an optical multiplexer the transmission characteristics of which are unlikely to be affected by fabrication errors and which have small group delay dispersion. A cross output port (X-OUT) of a second optical demultiplexer element (DEMUX) is selected, and a through output port (T-OUT) of a third DEMUX is selected. A T-OUT of a first DEMUX has a passband equal to the X-OUT of the second DEMUX, and a X-OUT of the first DEMUX has a passband equal to the T-OUT of the third DEMUX. The T-OUT of the first DEMUX has group delay characteristics opposite to those of the X-OUT of the second DEMUX, and the X-OUT of the first DEMUX has group delay characteristics opposite to those of the T-OUT of the third DEMUX.
    Type: Grant
    Filed: February 4, 2002
    Date of Patent: May 11, 2004
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Tsutomu Kitoh, Yasuyuki Inoue, Manabu Oguma, Yoshinori Hibino, Kaname Jinguji
  • Patent number: 6606433
    Abstract: An optical multi/demultiplexer is provided that has a wide passband and small crosstalk among its all channels. It includes first and second arrayed waveguide gratings and a 2×2 optical signal processor. The 2×2 optical signal processor includes first to fourth directional couplers, and first to third delay lines. The first to third delay lines have thin film heater phase shifters for correcting phase errors involved in fabrication. Utilizing the 2×2 optical signal processor having a transmission spectrum with a square profile having a wide passband and rejection band makes it possible for the optical multi/demultiplexer that combines the arrayed waveguide gratings with the waveguide type circulating filter (2×2 optical signal processor) to widen the extinction bandwidth of the adjacent channel.
    Type: Grant
    Filed: June 27, 2001
    Date of Patent: August 12, 2003
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Manabu Oguma, Akira Himeno, Kaname Jinguji, Tsutomu Kitoh, Yoshinori Hibino
  • Publication number: 20020154863
    Abstract: A planar lightwave circuit is provided. The planar lightwave circuit includes a waveguide and a spotsize converter which is a part of the waveguide, wherein a core is embedded in a cladding in the waveguide, and the spotsize converter is located near an end face of a substrate on which the planar lightwave circuit is formed, the spotsize converter including: a core width fine-tuning part in an end face side of the substrate; and a core width converting part which follows the core width fine-tuning part; wherein core width of the spotsize converter is minimum at an end face of the substrate, a mean taper angle &thgr;1 of the core width fine-tuning part is larger than 0° and smaller than a mean taper angle &thgr;2 of the core width converting part.
    Type: Application
    Filed: September 13, 2001
    Publication date: October 24, 2002
    Inventors: Takayuki Mizuno, Tsutomu Kitoh, Yasuyuki Inoue, Yoshinori Hibino, Mikitaka Itoh, Takashi Saida, Yasuhiro Hida
  • Publication number: 20020106147
    Abstract: The present invention provides an optical demultiplexer and an optical multiplexer the transmission characteristics of which are unlikely to be affected by fabrication errors and which have small group delay dispersion. A cross output port (X-OUT) of a second optical demultiplexer element (DEMUX) is selected, and a through output port (T-OUT) of a third DEMUX is selected. A T-OUT of a first DEMUX has a passband equal to the X-OUT of the second DEMUX, and a X-OUT of the first DEMUX has a passband equal to the T-OUT of the third DEMUX. The T-OUT of the first DEMUX has group delay characteristics opposite to those of the X-OUT of the second DEMUX, and the X-OUT of the first DEMUX has group delay characteristics opposite to those of the T-OUT of the third DEMUX.
    Type: Application
    Filed: February 4, 2002
    Publication date: August 8, 2002
    Applicant: Nippon Telegraph and Telephone Corporation
    Inventors: Tsutomu Kitoh, Yasuyuki Inoue, Manabu Oguma, Yoshinori Hibino, Kaname Jinguji
  • Publication number: 20020015554
    Abstract: An optical multi/demultiplexer is provided that has a wide passband and small crosstalk among its all channels. It includes first and second arrayed waveguide gratings and a 2×2 optical signal processor. The 2×2 optical signal processor includes first to fourth directional couplers, and first to third delay lines. The first to third delay lines have thin film heater phase shifters for correcting phase errors involved in fabrication. Utilizing the 2×2 optical signal processor having a transmission spectrum with a square profile having a wide passband and rejection band makes it possible for the optical multi/demultiplexer that combines the arrayed waveguide gratings with the waveguide type circulating filter (2×2 optical signal processor) to widen the extinction bandwidth of the adjacent channel.
    Type: Application
    Filed: June 27, 2001
    Publication date: February 7, 2002
    Applicant: Nippon Telegraph and Telephone Corporation
    Inventors: Manabu Oguma, Akira Himeno, Kaname Jinguji, Tsutomu Kitoh, Yoshinori Hibino