Patents by Inventor Tsuyoshi Kowaka

Tsuyoshi Kowaka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7709415
    Abstract: Activated carbon useful as polarizable electrode material for an electric double-layer capacitor can be obtained by mixing a carbonaceous material and an alkali metal hydroxide while maintaining a solid state, granulating the obtained mixture while maintaining its solid state, dehydrating the obtained granulated substance while maintaining its solid state, and subjecting the granulated dehydration product obtained in the dehydration step to an activation treatment. The preferred pressure of the granulation treatment in the granulation step is 0.01 to 300 Torr, and the preferred temperature of the granulation treatment is 90 to 140° C. The preferred pressure of the dehydration treatment in the dehydration step is 0.01 to 10 Torr, and the preferred temperature of the dehydration treatment is 200 to 400° C.
    Type: Grant
    Filed: April 22, 2003
    Date of Patent: May 4, 2010
    Assignees: Kuraray Chemical Co., Ltd., Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Nozomu Sugo, Hideharu Iwasaki, Takanori Kitamura, Tatsuo Morotomi, Tsuyoshi Kowaka, Teruhiro Okada, Shushi Nishimura, Takeshi Fujino, Shigeki Oyama, Yuji Kawabuchi
  • Publication number: 20050181941
    Abstract: Activated carbon useful as polarizable electrode material for an electric double-layer capacitor can be obtained by mixing a carbonaceous material and an alkali metal hydroxide while maintaining a solid state, granulating the obtained mixture while maintaining its solid state, dehydrating the obtained granulated substance while maintaining its solid state, and subjecting the granulated dehydration product obtained in the dehydration step to an activation treatment. The preferred pressure of the granulation treatment in the granulation step is 0.01 to 300 Torr, and the preferred temperature of the granulation treatment is 90 to 140° C. The preferred pressure of the dehydration treatment in the dehydration step is 0.01 to 10 Torr, and the preferred temperature of the dehydration treatment is 200 to 400° C.
    Type: Application
    Filed: April 22, 2003
    Publication date: August 18, 2005
    Inventors: Nozomu Sugo, Hideharu Iwasaki, Takanori Kitamura, Tatsuo Morotomi, Tsuyoshi Kowaka, Teruhiro Okada, Shushi Nishimura, Takeshi Fujino, Shigeki Oyama, Yuji Kawabuchi
  • Patent number: 6743859
    Abstract: A method of producing polyvinyl alcohol polymer, with which a high-strength polyvinyl alcohol polymer with a high degree of saponification can be obtained, the polyvinyl ester saponification process can be linked directly with the spinning process, in which the polyvinyl alcohol polymer is made into fiber, the mole ratio of alcohol with respect to the polyvinyl alcohol can be freely selected, and the concentration of the polyvinyl alcohol obtained by the saponification reaction is high. The polyvinyl alcohol polymer that is obtained by this method exhibits a high block character value and is excellent in randomness is provided, wherein a polyvinyl ester is subject to a saponification reaction in an alcohol-containing organic solvent under the presence of a saponification catalyst and the saponification is carried out while distilling off the carboxylic acid ester that is produced by the saponification reaction.
    Type: Grant
    Filed: May 24, 2000
    Date of Patent: June 1, 2004
    Assignee: Kuraray Co., Ltd.
    Inventors: Tsuyoshi Kowaka, Junji Funakoshi, Hiroyuki Miyawaki, Kazunori Watanabe
  • Publication number: 20030004279
    Abstract: A method of producing polyvinyl alcohol polymer, with which a high-strength polyvinyl alcohol polymer with a high degree of saponification can be obtained, the polyvinyl ester saponification process can be linked directly with the spinning process, in which the polyvinyl alcohol polymer is made into fiber, the mole ratio of alcohol with respect to the polyvinyl alcohol can be freely selected, and the concentration of the polyvinyl alcohol obtained by the saponification reaction is high. The polyvinyl alcohol polymer that is obtained by this method exhibits a high block character value and is excellent in randomness is provided, wherein a polyvinyl ester is subject to a saponification reaction in an alcohol-containing organic solvent under the presence of a saponification catalyst and the saponification is carried out while distilling off the carboxylic acid ester that is produced by the saponification reaction.
    Type: Application
    Filed: May 24, 2000
    Publication date: January 2, 2003
    Inventors: Tsuyoshi Kowaka, Junji Funakoshi, Hiroyuki Miyawaki, Kazunori Watanabe