Patents by Inventor Tsuyoshi Shimazu

Tsuyoshi Shimazu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9921089
    Abstract: A pressure type flow rate control apparatus is provided wherein flow rate of fluid passing through an orifice is computed as Qc=KP1 (where K is a proportionality constant) or as Qc=KP2m (P1-P2)n (where K is a proportionality constant, m and n constants) by using orifice upstream side pressure P1 and/or orifice downstream side pressure P2. A fluid passage between the downstream side of a control valve and a fluid supply pipe of the pressure type flow rate control apparatus comprises at least 2 fluid passages in parallel, and orifices having different flow rate characteristics are provided for each of these fluid passages, wherein fluid in a small flow quantity area flows to one orifice for flow control of fluid in the small flow quantity area, while fluid in a large flow quantity area flows to the other orifice for flow control of fluid in the large flow quantity area.
    Type: Grant
    Filed: June 2, 2016
    Date of Patent: March 20, 2018
    Assignees: Fujikin Incorporated, National University Corporation Tohuku University, Tokyo Electron Ltd.
    Inventors: Tadahiro Ohmi, Masahito Saito, Shoichi Hino, Tsuyoshi Shimazu, Kazuyuki Miura, Kouji Nishino, Masaaki Nagase, Katsuyuki Sugita, Kaoru Hirata, Ryousuke Dohi, Takashi Hirose, Tsutomu Shinohara, Nobukazu Ikeda, Tomokazu Imai, Toshihide Yoshida, Hisashi Tanaka
  • Publication number: 20160274595
    Abstract: A pressure type flow rate control apparatus is provided wherein flow rate of fluid passing through an orifice is computed as Qc=KP1 (where K is a proportionality constant) or as Qc=KP2m(P1?P2)n (where K is a proportionality constant, m and n constants) by using orifice upstream side pressure P1 and/or orifice downstream side pressure P2. A fluid passage between the downstream side of a control valve and a fluid supply pipe of the pressure type flow rate control apparatus comprises at least 2 fluid passages in parallel, and orifices having different flow rate characteristics are provided for each of these fluid passages, wherein fluid in a small flow quantity area flows to one orifice for flow control of fluid in the small flow quantity area, while fluid in a large flow quantity area flows to the other orifice for flow control of fluid in the large flow quantity area.
    Type: Application
    Filed: June 2, 2016
    Publication date: September 22, 2016
    Inventors: Tadahiro Ohmi, Masahito Saito, Shoichi Hino, Tsuyoshi Shimazu, Kazuyuki Miura, Kouji Nishino, Masaaki Nagase, Katsuyuki Sugita, Kaoru Hirata, Ryousuke Dohi, Takashi Hirose, Tsutomu Shinohara, Nobukazu Ikeda, Tomokazu Imai, Toshihide Yoshida, Hisashi Tanaka
  • Patent number: 9383758
    Abstract: A pressure type flow rate control apparatus is provided wherein flow rate of fluid passing through an orifice is computed as Qc=KP1 (where K is a proportionality constant) or as Qc=KP2m(P1?P2)n (where K is a proportionality constant, m and n constants) by using orifice upstream side pressure P1 and/or orifice downstream side pressure P2. A fluid passage between the downstream side of a control valve and a fluid supply pipe of the pressure type flow rate control apparatus comprises at least 2 fluid passages in parallel, and orifices having different flow rate characteristics are provided for each of these fluid passages, wherein fluid in a small flow quantity area flows to one orifice for flow control of fluid in the small flow quantity area, while fluid in a large flow quantity area flows to the other orifice for flow control of fluid in the large flow quantity area.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: July 5, 2016
    Assignees: Fujikin Incorporated, National University Corporation Tohoku University, Tokyo Electron Ltd.
    Inventors: Tadahiro Ohmi, Masahito Saito, Shoichi Hino, Tsuyoshi Shimazu, Kazuyuki Miura, Kouji Nishino, Masaaki Nagase, Katsuyuki Sugita, Kaoru Hirata, Ryousuke Dohi, Takashi Hirose, Tsutomu Shinohara, Nobukazu Ikeda, Tomokazu Imai, Toshihide Yoshida, Hisashi Tanaka
  • Publication number: 20160109886
    Abstract: A pressure type flow rate control apparatus is provided wherein flow rate of fluid passing through an orifice is computed as Qc=KP1 (where K is a proportionality constant) or as Qc=KP2m(P1?P2)n (where K is a proportionality constant, m and n constants) by using orifice upstream side pressure P1 and/or orifice downstream side pressure P2. A fluid passage between the downstream side of a control valve and a fluid supply pipe of the pressure type flow rate control apparatus comprises at least 2 fluid passages in parallel, and orifices having different flow rate characteristics are provided for each of these fluid passages, wherein fluid in a small flow quantity area flows to one orifice for flow control of fluid in the small flow quantity area, while fluid in a large flow quantity area flows to the other orifice for flow control of fluid in the large flow quantity area.
    Type: Application
    Filed: December 21, 2015
    Publication date: April 21, 2016
    Inventors: Tadahiro Ohmi, Masahito Saito, Shoichi Hino, Tsuyoshi Shimazu, Kazuyuki Miura, Kouji Nishino, Masaaki Nagase, Katsuyuki Sugita, Kaoru Hirata, Ryousuke Dohi, Takashi Hirose, Tsutomu Shinohara, Nobukazu Ikeda, Tomokazu Imai, Toshihide Yoshida, Hisashi Tanaka
  • Publication number: 20150160662
    Abstract: A pressure type flow rate control apparatus is provided wherein flow rate of fluid passing through an orifice is computed as Qc=KP1 (where K is a proportionality constant) or as Qc=KP2m (P1?P2)n (where K is a proportionality constant, m and n constants) by using orifice upstream side pressure P1 and/or orifice downstream side pressure P2. A fluid passage between the downstream side of a control valve and a fluid supply pipe of the pressure type flow rate control apparatus comprises at least 2 fluid passages in parallel, and orifices having different flow rate characteristics are provided for each of these fluid passages, wherein fluid in a small flow quantity area flows to one orifice for flow control of fluid in the small flow quantity area, while fluid in a large flow quantity area flows to the other orifice for flow control of fluid in the large flow quantity area.
    Type: Application
    Filed: February 19, 2015
    Publication date: June 11, 2015
    Inventors: Tadahiro Ohmi, Masahito Saito, Shoichi Hino, Tsuyoshi Shimazu, Kazuyuki Miura, Kouji Nishino, Masaaki Nagase, Katsuyuki Sugita, Kaoru Hirata, Ryousuke Dohi, Takashi Hirose, Tsutomu Shinohara, Nobukazu Ikeda, Tomokazu Imai, Toshihide Yoshida, Hisashi Tanaka
  • Patent number: 9010369
    Abstract: A pressure type flow rate control apparatus is provided wherein flow rate of fluid passing through an orifice is computed as Qc=KP1 (where K is a proportionality constant) or as Qc=KP2m (P1?P2)n (where K is a proportionality constant, m and n constants) by using orifice upstream side pressure P1 and/or orifice downstream side pressure P2. A fluid passage between the downstream side of a control valve and a fluid supply pipe of the pressure type flow rate control apparatus comprises at least 2 fluid passages in parallel, and orifices having different flow rate characteristics are provided for each of these fluid passages, wherein fluid in a small flow quantity area flows to one orifice for flow control of fluid in the small flow quantity area, while fluid in a large flow quantity area flows to the other orifice for flow control of fluid in the large flow quantity area.
    Type: Grant
    Filed: February 8, 2013
    Date of Patent: April 21, 2015
    Assignees: Fujikin Incorporated, National University Corporation Tohoku University, Tokyo Electron Ltd.
    Inventors: Tadahiro Ohmi, Masahito Saito, Shoichi Hino, Tsuyoshi Shimazu, Kazuyuki Miura, Kouji Nishino, Masaaki Nagase, Katsuyuki Sugita, Kaoru Hirata, Ryousuke Dohi, Takashi Hirose, Tsutomu Shinohara, Nobukazu Ikeda, Tomokazu Imai, Toshihide Yoshida, Hisashi Tanaka
  • Patent number: 8418714
    Abstract: A pressure type flow rate control apparatus is provided wherein flow rate of fluid passing through an orifice is computed as Qc=KP1 (where K is a proportionality constant) or as Qc=KP2m(P1?P2)n (where K is a proportionality constant, m and n constants) by using orifice upstream side pressure P1 and/or orifice downstream side pressure P2. A fluid passage between the downstream side of a control valve and a fluid supply pipe of the pressure type flow rate control apparatus comprises at least 2 fluid passages in parallel, and orifices having different flow rate characteristics are provided for each of these fluid passages, wherein fluid in a small flow quantity area flows to one orifice for flow control of fluid in the small flow quantity area, while fluid in a large flow quantity area flows to the other orifice for flow control of fluid in the large flow quantity area.
    Type: Grant
    Filed: June 22, 2006
    Date of Patent: April 16, 2013
    Assignees: Fujikin Incorporated, National University Corporation Tohoku University, Tokyo Electron Ltd.
    Inventors: Tadahiro Ohmi, Masahito Saito, Shoichi Hino, Tsuyoshi Shimazu, Kazuyuki Miura, Kouji Nishino, Masaaki Nagase, Katsuyuki Sugita, Kaoru Hirata, Ryousuke Dohi, Takashi Hirose, Tsutomu Shinohara, Nobukazu Ikeda, Tomokazu Imai, Toshihide Yoshida, Hisashi Tanaka
  • Patent number: 8109288
    Abstract: A partial pressure control system 45 includes two valves 2 which are branched from an operation gas supply pipe 44 and which variably control operation gas, pressure sensors 3 which are respectively connected to the each valves 2 in series and which detect pressure of the operation gas, and a controller 25 which proportionally controls the operation of the valves 2 based on detection result of the pressure sensors 3, thereby relatively controlling pressures P1 and P2 of the two valves. With this configuration, it is possible to reduce wastefull consumption of the operation gas, and to enhance the responsivity with respect to change of setting and the like.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: February 7, 2012
    Assignee: Tokyo Electron Limited
    Inventors: Hideki Nagaoka, Hiroshi Koizumi, Jun Ooyabu, Tsuyoshi Shimazu, Hiroki Endo, Keiki Ito, Daisuke Hayashi
  • Publication number: 20100139775
    Abstract: A pressure type flow control device enabling a reduction in size and an installation cost by accurately controlling the flow of a fluid in a wide flow range. Specifically, the flow of the fluid flowing in an orifice (8) is calculated as Qc=KP1 (K is a proportionality factor) or Qc=KP2m(P1?P2)n (K is a proportionality factor and m and n are constants) by using a pressure P1 on the upstream side of the orifice and a pressure P2 on the downstream side of the orifice. A fluid passage between the downstream side of the control valve of the flow control device and a fluid feed pipe is formed of at least two or more fluid passages positioned parallel with each other. Orifices with different fluid flow characteristics are interposed in the fluid passages positioned parallel with each other. For the control of the fluid in a small flow area, the fluid in the small flow area is allowed to flow to one orifice.
    Type: Application
    Filed: June 22, 2006
    Publication date: June 10, 2010
    Applicants: FUJIKIN INCORPORATED, NATIONAL UNIVERSITY CORPORATION TOHOKU UNIVERSITY, TOKYO ELECTRON LTD.
    Inventors: Tadahiro Ohmi, Masahito Saito, Shoichi Hino, Tsuyoshi Shimazu, Kazuyuki Miura, Kouji Nishino, Masaaki Nagase, Katsuyuki Sugita, Kaoru Hirata, Ryousuke Dohi, Takashi Hirose, Tsutomu Shinohara, Nobukazu Ikeda, Tomokazu Imai, Toshihide Yoshida, Hisashi Tanaka
  • Patent number: 7481240
    Abstract: A partial pressure control system 45 includes two valves 2 which are branched from an operation gas supply pipe 44 and which variably control operation gas, pressure sensors 3 which are respectively connected to the each valves 2 in series and which detect pressure of the operation gas, and a controller 25 which proportionally controls the operation of the valves 2 based on detection result of the pressure sensors 3, thereby relatively controlling pressures P1 and P2 of the two valves. With this configuration, it is possible to reduce wastefull consumption of the operation gas, and to enhance the responsivity with respect to change of setting and the like.
    Type: Grant
    Filed: June 9, 2004
    Date of Patent: January 27, 2009
    Assignee: Tokyo Electron Limited
    Inventors: Hideki Nagaoka, Hiroshi Koizumi, Jun Ooyabu, Tsuyoshi Shimazu, Hiroki Endo, Keiki Ito, Daisuke Hayashi
  • Publication number: 20080300728
    Abstract: A partial pressure control system 45 includes two valves 2 which are branched from an operation gas supply pipe 44 and which variably control operation gas, pressure sensors 3 which are respectively connected to the each valves 2 in series and which detect pressure of the operation gas, and a controller 25 which proportionally controls the operation of the valves 2 based on detection result of the pressure sensors 3, thereby relatively controlling pressures P1 and P2 of the two valves. With this configuration, it is possible to reduce wastefull consumption of the operation gas, and to enhance the responsivity with respect to change of setting and the like.
    Type: Application
    Filed: July 31, 2008
    Publication date: December 4, 2008
    Inventors: Hideki Nagaoka, Hiroshi Koizumi, Jun Ooyabu, Tsuyoshi Shimazu, Hiroki Endo, Keiki Ito, Daisuke Hayashi
  • Patent number: 7353841
    Abstract: Provided is a relative pressure control system has a simple configuration, but enables accurate regulation of a division ratio of an operation gas, and concurrently makes it possible to securely drain the operation gas from an operation gas pipeline in case of emergency. The system includes a plurality of air operated valves of a normally open type that are connected to an operation gas pipeline supplied with an operation gas; pressure sensors that are series connected to the respective air operated valves and that detect output pressures of the respective air operated valves; a controller that controls operation pressures of the respective air operated valves in accordance with the pressures detected by the pressure sensors; and a hard interlock solenoid valve that correlates the plurality of air operated valves to one another so that at least one of the plurality of air operated valves is normally opened.
    Type: Grant
    Filed: December 7, 2005
    Date of Patent: April 8, 2008
    Assignees: CKD Corporation, Tokyo Electron Limited
    Inventors: Tetsujiro Kono, Hiroki Doi, Minoru Ito, Hideki Nagaoka, Keiki Ito, Hiroki Endo, Tsuyoshi Shimazu, Jun Hirose, Osamu Katsumata, Kazuyuki Miura, Takashi Kitazawa
  • Publication number: 20060097644
    Abstract: Provided is a relative pressure control system has a simple configuration, but enables accurate regulation of a division ratio of an operation gas, and concurrently makes it possible to securely drain the operation gas from an operation gas pipeline in case of emergency. The system includes a plurality of air operated valves of a normally open type that are connected to an operation gas pipeline supplied with an operation gas; pressure sensors that are series connected to the respective air operated valves and that detect output pressures of the respective air operated valves; a controller that controls operation pressures of the respective air operated valves in accordance with the pressures detected by the pressure sensors; and a hard-interlock solenoid valve that correlates the plurality of air operated valves to one another so that at least one of the plurality of air operated valves is normally opened.
    Type: Application
    Filed: December 7, 2005
    Publication date: May 11, 2006
    Applicants: CKD CORPORATION, TOKYO ELECTRON LIMITED
    Inventors: Tetsujiro Kono, Hiroki Doi, Minoru Ito, Hideki Nagaoka, Keiki Ito, Hiroki Endo, Tsuyoshi Shimazu, Jun Hirose, Osamu Katsumata, Kazuyuki Miura, Takashi Kitazawa
  • Publication number: 20050029369
    Abstract: A partial pressure control system 45 includes two valves 2 which are branched from an operation gas supply pipe 44 and which variably control operation gas, pressure sensors 3 which are respectively connected to the each valves 2 in series and which detect pressure of the operation gas, and a controller 25 which proportionally controls the operation of the valves 2 based on detection result of the pressure sensors 3, thereby relatively controlling pressures P1 and P2 of the two valves. With this configuration, it is possible to reduce wastefull consumption of the operation gas, and to enhance the responsivity with respect to change of setting and the like.
    Type: Application
    Filed: June 9, 2004
    Publication date: February 10, 2005
    Inventors: Hideki Nagaoka, Hiroshi Koizumi, Jun Ooyabu, Tsuyoshi Shimazu, Hiroki Endo, Keiki Ito, Daisuke Hayashi