Patents by Inventor Tsuyoshi Tosho

Tsuyoshi Tosho has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11342490
    Abstract: A method may be provided of manufacturing a thermoelectric leg. The method may include preparing a first metal substrate including a first metal, and forming a first plated layer including a second metal on the first metal substrate. The method may also include disposing a layer including tellurium (Te) on the first plated layer, and forming a portion of the first plated layer as a first bonding layer by reacting the second metal and the Te. The method also includes disposing a thermoelectric material layer including bismuth (Bi) and Te on an upper surface of the first bonding layer, and disposing a second metal substrate, on which a second bonding layer and a second plated layer are formed, on the thermoelectric material layer, and sintering.
    Type: Grant
    Filed: August 20, 2020
    Date of Patent: May 24, 2022
    Assignee: LG INNOTEK CO., LTD.
    Inventor: Tsuyoshi Tosho
  • Patent number: 11233187
    Abstract: According to one embodiment of the present invention, a thermoelectric leg comprises: a thermoelectric material layer comprising Bi and Te; a first metal layer and a second metal layer respectively arranged the thermoelectric material layer; a first adhesive layer arranged between the thermoelectric material layer and the first metal layer and comprising the Te, and a second adhesive layer arranged between the thermoelectric material layer and the second metal layer and comprising the Te; and a first plating layer arranged between the first metal layer and the first adhesive layer, and a second plating layer arranged between the second metal layer and the second adhesive layer, wherein the thermoelectric material layer is arranged between the first metal layer and the second metal layer, the amount of the Te is higher than the amount of the Bi in the thermoelectric material layer.
    Type: Grant
    Filed: June 1, 2017
    Date of Patent: January 25, 2022
    Assignee: LG INNOTEK CO., LTD.
    Inventor: Tsuyoshi Tosho
  • Publication number: 20200381605
    Abstract: According to one embodiment of the present invention, a thermoelectric leg comprises: a thermoelectric material layer comprising Bi and Te; a first metal layer and a second metal layer respectively arranged on one surface of the thermoelectric material layer and on a surface different from the one surface; a first adhesive layer arranged between the thermoelectric material layer and the first metal layer and comprising the Te, and a second adhesive layer arranged between the thermoelectric material layer and the second metal layer and comprising the Te; and a first plating layer arranged between the first metal layer and the first adhesive layer, and a second plating layer arranged between the second metal layer and the second adhesive layer, wherein the thermoelectric material layer is arranged between the first metal layer and the second metal layer, the amount of the Te is higher than the amount of the Bi from the centerline of the thermoelectric material layer to the interface between the thermoelectric m
    Type: Application
    Filed: August 20, 2020
    Publication date: December 3, 2020
    Inventor: Tsuyoshi TOSHO
  • Publication number: 20190214539
    Abstract: According to one embodiment of the present invention, a thermoelectric leg comprises: a thermoelectric material layer comprising Bi and Te; a first metal layer and a second metal layer respectively arranged on one surface of the thermoelectric material layer and on a surface different from the one surface; a first adhesive layer arranged between the thermoelectric material layer and the first metal layer and comprising the Te, and a second adhesive layer arranged between the thermoelectric material layer and the second metal layer and comprising the Te; and a first plating layer arranged between the first metal layer and the first adhesive layer, and a second plating layer arranged between the second metal layer and the second adhesive layer, wherein the thermoelectric material layer is arranged between the first metal layer and the second metal layer, the amount of the Te is higher than the amount of the Bi from the centerline of the thermoelectric material layer to the interface between the thermoelectric m
    Type: Application
    Filed: June 1, 2017
    Publication date: July 11, 2019
    Inventor: Tsuyoshi TOSHO
  • Patent number: 8884152
    Abstract: A metal mixture is prepared, in which an excess amount of Te is added to a (Bi—Sb)2Te3 based composition. After melting the metal mixture, the molten metal is solidified on a surface of a cooling roll of which the circumferential velocity is no higher than 5 m/sec, so as to have a thickness of no less than 30 ?m. Thus, a plate shaped raw thermoelectric semiconductor materials 10 are manufactured, in which Te rich phases are microscopically dispersed in complex compound semiconductor phases, and extending directions of C face of most of crystal grains are uniformly oriented. The raw thermoelectric semiconductor materials 10 are layered in the direction of the plate thickness. And the layered body is solidified and formed to form a compact 12. After that, the compact 12 is plastically deformed in such a manner that a shear force is applied in a uniaxial direction that is approximately parallel to the main layering direction of the raw thermoelectric semiconductor materials 10.
    Type: Grant
    Filed: February 24, 2014
    Date of Patent: November 11, 2014
    Assignee: IHI Corporation
    Inventors: Toshinori Ota, Hirold Yoshizawa, Kouiti Fujita, Isao Imai, Tsuyoshi Tosho, Ujihiro Nishiike
  • Publication number: 20140170794
    Abstract: A metal mixture is prepared, in which an excess amount of Te is added to a (Bi—Sb)2Te3 based composition. After melting the metal mixture, the molten metal is solidified on a surface of a cooling roll of which the circumferential velocity is no higher than 5 m/sec, so as to have a thickness of no less than 30 ?m. Thus, a plate shaped raw thermoelectric semiconductor materials 10 are manufactured, in which Te rich phases are microscopically dispersed in complex compound semiconductor phases, and extending directions of C face of most of crystal grains are uniformly oriented. The raw thermoelectric semiconductor materials 10 are layered in the direction of the plate thickness. And the layered body is solidified and formed to form a compact 12. After that, the compact 12 is plastically deformed in such a manner that a shear force is applied in a uniaxial direction that is approximately parallel to the main layering direction of the raw thermoelectric semiconductor materials 10.
    Type: Application
    Filed: February 24, 2014
    Publication date: June 19, 2014
    Applicant: IHI Corporation
    Inventors: Toshinori OTA, Hiroki Yoshizawa, Kouiti FUJITA, Isao IMAI, Tsuyoshi TOSHO, Ujihiro NISHIIKE
  • Patent number: 8692103
    Abstract: A metal mixture is prepared, in which an excess amount of Te is added to a (Bi—Sb)2Te3 based composition. After melting the metal mixture, the molten metal is solidified on a surface of a cooling roll of which the circumferential velocity is no higher than 5 m/sec, so as to have a thickness of no less than 30 ?m. Thus, a plate shaped raw thermoelectric semiconductor materials 10 are manufactured, in which Te rich phases are microscopically dispersed in complex compound semiconductor phases, and extending directions of C face of most of crystal grains are uniformly oriented. The raw thermoelectric semiconductor materials 10 are layered in the direction of the plate thickness. And the layered body is solidified and formed to form a compact 12. After that, the compact 12 is plastically deformed in such a manner that a shear force is applied in a uniaxial direction that is approximately parallel to the main layering direction of the raw thermoelectric semiconductor materials 10.
    Type: Grant
    Filed: April 11, 2011
    Date of Patent: April 8, 2014
    Assignee: IHI Corporation
    Inventors: Toshinori Ota, Hiroki Yoshizawa, Kouiti Fujita, Isao Imai, Tsuyoshi Tosho, Ujihiro Nishiike
  • Publication number: 20110180121
    Abstract: A metal mixture is prepared, in which an excess amount of Te is added to a (Bi—Sb)2Te3 based composition. After melting the metal mixture, the molten metal is solidified on a surface of a cooling roll of which the circumferential velocity is no higher than 5 m/sec, so as to have a thickness of no less than 30 ?m. Thus, a plate shaped raw thermoelectric semiconductor materials 10 are manufactured, in which Te rich phases are microscopically dispersed in complex compound semiconductor phases, and extending directions of C face of most of crystal grains are uniformly oriented. The raw thermoelectric semiconductor materials 10 are layered in the direction of the plate thickness. And the layered body is solidified and formed to form a compact 12. After that, the compact 12 is plastically deformed in such a manner that a shear force is applied in a uniaxial direction that is approximately parallel to the main layering direction of the raw thermoelectric semiconductor materials 10.
    Type: Application
    Filed: April 11, 2011
    Publication date: July 28, 2011
    Inventors: Toshinori Ota, Hiroki Yoshizawa, Kouiti Fujita, Isao Imai, Tsuyoshi Tosho, Ujihiro Nishiike
  • Publication number: 20060243314
    Abstract: A metal mixture is prepared, in which an excess amount of Te is added to a (Bi—Sb)2Te3 based composition. After melting the metal mixture, the molten metal is solidified on a surface of a cooling roll of which the circumferential velocity is no higher than 5 m/sec, so as to have a thickness of no less than 30 ?m. Thus, a plate shaped raw thermoelectric semiconductor materials 10 are manufactured, in which Te rich phases are microscopically dispersed in complex compound semiconductor phases, and extending directions of C face of most of crystal grains are uniformly oriented. The raw thermoelectric semiconductor materials 10 are layered in the direction of the plate thickness. And the layered body is solidified and formed to form a compact 12. After that, the compact 12 is plastically deformed in such a manner that a shear force is applied in a uniaxial direction that is approximately parallel to the main layering direction of the raw thermoelectric semiconductor materials 10.
    Type: Application
    Filed: May 7, 2004
    Publication date: November 2, 2006
    Applicant: ISHIKAWAJIMA-HARIMA HEAVY INDUSTRIES CO., LTD.
    Inventors: Toshinori Ota, Hiroki Yoshizawa, Kouiti Fujita, Isao Imai, Tsuyoshi Tosho, Ujihiro Nishiike
  • Patent number: 6172294
    Abstract: A thermoelectric semiconductor is formed of a sintered semiconductor layer and metal layers arranged on sides of opposite end faces of the sintered semiconductor layer. These metal layers are to inhibit a reaction between the sintered semiconductor layer and solder layers through which electrodes are joined to the sintered semiconductor layer. The sintered semiconductor layer and the metal layers have been obtained beforehand by integrally sintering a semiconductor powder layer and metal sheets arranged on sides of opposite end faces of the semiconductor powder layer.
    Type: Grant
    Filed: April 12, 1999
    Date of Patent: January 9, 2001
    Assignees: Technova Inc., Engineering Advancement Association of Japan
    Inventors: Katsuhiro Tsuno, Tsuyoshi Tosho, Hideo Watanabe
  • Patent number: 5959341
    Abstract: A thermoelectric semiconductor is formed of a sintered semiconductor layer nd metal layers arranged on sides of opposite end faces of the sintered semiconductor layer. These metal layers are to inhibit a reaction between the sintered semiconductor layer and older layers through which electrodes are joined to the sintered semiconductor layer. The sintered semiconductor layer and the metal layers have been obtained beforehand by integrally sintering a semiconductor powder layer and metal sheets arranged on sides of opposite end faces of the semiconductor powder layer.
    Type: Grant
    Filed: July 28, 1997
    Date of Patent: September 28, 1999
    Assignee: Technova Inc. and Engineering Advancement Association of Japan
    Inventors: Katsuhiro Tsuno, Tsuyoshi Tosho, Hideo Watanabe
  • Patent number: 5224002
    Abstract: An object of the present invention is to provide a thin-film magnetic head device capable of magnetically writing magnetic signals into a magnetic recording medium having a high coercive force and reading the same therefrom. At least one of upper and lower magnetic layers is composed of a main magnetic layer and a sub magnetic layer. The sub magnetic layer has a saturation magnetic flux density of 1.5T or greater, a magnetic permeability of 1000 or less and an anisotropic magnetic field of 10 Oe or greater. The thickness of the sub magnetic layer should preferably be 0.5 .mu.m or less. According to the present invention, the sub magnetic layer can obtain a high saturation magnetic flux density and the main magnetic layer can attain a high magnetic permeability. With a thickness of 0.5 .mu.m or less, the sub magnetic layer can obtain a high saturation magnetic flux density without reducing the magnetic permeability.
    Type: Grant
    Filed: December 17, 1991
    Date of Patent: June 29, 1993
    Assignee: Alps Electric Co., Ltd.
    Inventors: Keishi Nakashima, Tsuyoshi Tosho