Patents by Inventor Tsvetomira Kirova Tsoneva

Tsvetomira Kirova Tsoneva has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210128867
    Abstract: The present disclosure pertains to a system and method for determining whether a subject is likely to be disturbed by therapy levels of stimulation provided to the subject during sleep sessions. The present system is configured to automatically identify sensitive users using electroencephalogram (EEG) information from a reference sleep session with or without stimulation. For reference sleep sessions without stimulation, the alpha activity in detected deep sleep is used to predict whether the subject is likely to be disturbed by therapy levels of stimulation. For reference sleep sessions with stimulation, the acute increase in EEG delta (e.g., 0.5-4 Hz) power and/or an arousability index are used to predict whether the subject is likely to be disturbed by therapy levels of stimulation.
    Type: Application
    Filed: December 27, 2017
    Publication date: May 6, 2021
    Inventors: Gary Nelson GARCIA MOLINA, Surya Subrahmanya Sreeram VISSAPRAGADA VENKATA SATYA, Stefan PFUNDTNER, Tsvetomira Kirova TSONEVA, Anandi MAHADEVAN
  • Publication number: 20210121657
    Abstract: A method is provided for measuring a wake up indicator, where the wake up indicator gives the likelihood of a user waking up undesirably. It is based on the knowledge that waking up during deep NREM sleep is not desirable due to sleep inertia and on the recognition that it is also undesirable to wake up during REM sleep due to atonia. A sleep inertia estimation is determined to estimate if the user is in NREM sleep and an atonia estimation is determined to estimate if the user is in REM sleep. The wake up indicator is determined from the sleep inertia estimation and the atonia estimation. The wake up indicator thus may be used as an indicator for the time when it is suitable to wake up the user in a way which avoids arousal from a deep sleep state or from REM sleep, during which atonia may arise.
    Type: Application
    Filed: October 28, 2020
    Publication date: April 29, 2021
    Inventors: Tsvetomira Kirova TSONEVA, Gary Nelson GARCIA MOLINA, Xia CHEN
  • Patent number: 10939866
    Abstract: The present disclosure pertains to a system and method for determining sleep onset latency in a subject. The system is configured to generate output signals conveying information related to brain activity in the subject, determine sleep stages of the subject based on the output signals, determine a sleep onset moment in the subject based on the determined sleep stages, determine a sleep intention moment for the subject by: (i) detecting eye blinks in the subject based on the output signals, and determining the sleep intention moment responsive to the detected eye blinks ceasing for a predetermined period of time; and/or (ii) determining whether brain activity power in a target frequency band has breached a threshold power level based on the output signals, and determining the sleep intention moment responsive to a breach; and determine the sleep onset latency based on the sleep onset moment and the sleep intention moment.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: March 9, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Tsvetomira Kirova Tsoneva, Gary Nelson Garcia Molina
  • Publication number: 20200305753
    Abstract: A system for delivering sensory stimulation a sensor; a sensory stimulator configured to deliver sensory stimulation to a patient during a sleep session, the sensory stimulation having varying stimulation intensity levels; and a computer system. One or more physical processors being programmed with computer program instructions which, when executed cause the computer system to: determine sleep stage information of the patient based on brain activity information of the patient during the sleep session from the sensor; provide input to the sensory stimulator based on the determined sleep stage information of the patient, the provided input causing the sensory stimulator to deliver the sensory stimulation to the patient; obtain stimulation response information from the patient, the stimulation response information including patient brain response to the delivered sensory stimulation; and determine a range of the stimulation intensity levels within which the patient brain response reaches a threshold.
    Type: Application
    Filed: March 27, 2020
    Publication date: October 1, 2020
    Inventors: Tsvetomira Kirova TSONEVA, Gary Nelson GARCIA MOLINA, Stefan PFUNDTNER, Sander Theodoor PASTOOR
  • Publication number: 20200306494
    Abstract: Typically, high NREM stage N3 sleep detection accuracy is achieved using a frontal electrode referenced to an electrode at a distant location on the head (e.g., the mastoid, or the earlobe). For comfort and design considerations it is more convenient to have active and reference electrodes closely positioned on the frontal region of the head. This configuration, however, significantly attenuates the signal, which degrades sleep stage detection (e.g., N3) performance. The present disclosure describes a deep neural network (DNN) based solution developed to detect sleep using frontal electrodes only. N3 detection is enhanced through post-processing of the soft DNN outputs. Detection of slow-waves and sleep micro-arousals is accomplished using frequency domain thresholds. Volume modulation uses a high-frequency/low-frequency spectral ratio extracted from the frontal signal.
    Type: Application
    Filed: March 27, 2020
    Publication date: October 1, 2020
    Inventors: Gary Nelson Garcia MOLINA, Ulf GROSSEKATHĂ–FER, Stojan TRAJANOVSKI, Jesse SALAZAR, Tsvetomira Kirova TSONEVA, Sander Theodoor PASTOOR, Antonio AQUINO, Adrienne HEINRICH, Birpal Singh SACHDEV
  • Patent number: 10610660
    Abstract: The present disclosure pertains to a system configured to provide sensory stimulation to a subject during a sleep session. The system includes one or more sensory stimulators configured to provide sensory stimulation to the subject; one or more sensors configured to generate output signals conveying information related to brain activity of the subject; and one or more processors configured to detect individual slow waves in the subject; control the one or more sensory stimulators to provide sensory stimulation to the subject based on the detected individual slow waves; predict a timing for occurrence of a predicted slow wave based on the previously detected individual slow waves; and responsive to not detecting the predicted slow wave at the predicted timing control the one or more sensory stimulators to provide sensory stimulation at the predicted timing for occurrence of the predicted slow wave.
    Type: Grant
    Filed: April 14, 2016
    Date of Patent: April 7, 2020
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Stefan Pfundtner, Gary Nelson Garcia Molina, Tsvetomira Kirova Tsoneva
  • Publication number: 20200101262
    Abstract: The present disclosure pertains to delivering sensory stimulation to a user during a sleep session. In some embodiments, sensors are configured to generate output signals conveying information related to brain activity of the user during the sleep session. Sensory stimulators are configured to provide the sensory stimulation to the user during the sleep session. One or more processors are configured to determine a demographic group for the user; select a stimulation parameter model associated with the demographic group of the user from a set of stimulation parameter models associated with different demographic groups; and control the one or more sensory stimulators to deliver the sensory stimulation to the user based on the stimulation parameter model for the demographic group of the user and the output signals.
    Type: Application
    Filed: September 24, 2019
    Publication date: April 2, 2020
    Inventors: Gary Nelson GARCIA MOLINA, Tsvetomira Kirova TSONEVA, Keith BAHER, Brady Alexander RIEDNER
  • Publication number: 20200069905
    Abstract: The present disclosure pertains to manipulating electrical activity in the brain of a subject to facilitate wakefulness. The system comprises: a sensory stimulator; a sensor configured to generate output signals conveying information related to brain activity, activity of the central nervous system, and/or activity of the peripheral nervous system of the subject; and a processor configured to: receive a target wake-up moment for the subject; determine one or more activity parameters of the subject during the sleep session; determine whether the one or more activity parameters indicate the subject is in deep sleep a predetermined amount of time before the target wake-up moment; and, responsive to the one or more activity parameters indicating the subject is in deep sleep, cause the one or more sensory stimulators to guide the activity parameters and facilitate/accelerate a transition from deep sleep to light sleep before the target wake-up moment.
    Type: Application
    Filed: December 5, 2017
    Publication date: March 5, 2020
    Inventors: Tsvetomira Kirova TSONEVA, Gary Nelson GARCIA MOLINA
  • Publication number: 20190343455
    Abstract: The present disclosure pertains to a system configured to output an indicator representative of effects of stimulation provided to a subject during a sleep session. The indicator is determined based on a combination of the effect of stimulation on sleep restoration, stimulation quality, sleep architecture factors, and/or other information. The indicator is determined using age matched reference information on deep sleep duration and EEG slow wave activity. The contribution to the indicator associated with sleep architecture factors is determined based on age matched reference information including sleep onset latency, wake after sleep onset, total sleep time, micro-arousal count, sleep stage(s) prior to awakening, and/or other information.
    Type: Application
    Filed: December 21, 2017
    Publication date: November 14, 2019
    Inventors: Gary Nelson GARCIA MOLINA, Tsvetomira Kirova TSONEVA, Stefan PFUNDTNER, Surya Subrahmanya Sreeram VISSAPRAGADA VENKATA SATYA, Anandi MAHADEVAN, Diana KOSOBUD
  • Publication number: 20190192068
    Abstract: The present disclosure pertains to a system and method for determining sleep onset latency in a subject. The system is configured to generate output signals conveying information related to brain activity in the subject, determine sleep stages of the subject based on the output signals, determine a sleep onset moment in the subject based on the determined sleep stages, determine a sleep intention moment for the subject by: (i) detecting eye blinks in the subject based on the output signals, and determining the sleep intention moment responsive to the detected eye blinks ceasing for a predetermined period of time; and/or (ii) determining whether brain activity power in a target frequency band has breached a threshold power level based on the output signals, and determining the sleep intention moment responsive to a breach; and determine the sleep onset latency based on the sleep onset moment and the sleep intention moment.
    Type: Application
    Filed: November 30, 2018
    Publication date: June 27, 2019
    Inventors: Tsvetomira Kirova TSONEVA, Gary Nelson GARCIA MOLINA
  • Publication number: 20190083028
    Abstract: The present disclosure pertains to facilitating sleep improvement for a user. In a non-limiting embodiment, user data associated with a sleep session of a user is received from one or more sensors. Based on the user data, one or more sleep metrics associated with the sleep session are generated. One or more reference sleep metrics are determined based on prior user data obtained from one or more prior sleep sessions. One or more immediate values related to the sleep session is/are determined based on a comparison of the sleep metrics with the reference sleep metrics. A sleep session score value is generated based on the immediate values, and the sleep session score value and the sleep metrics are caused to be presented on via an output device.
    Type: Application
    Filed: June 14, 2018
    Publication date: March 21, 2019
    Inventors: Gary Nelson GARCIA MOLINA, Edouard Robert Marcus GEBSKI, Mark CHOI, Annette KAPITAN, Stefan PFUNDTNER, Tsvetomira Kirova TSONEVA, Anandi MAHADEVAN, Megan KING, Diane KOSOBUD, Jessica WEEDEN, Guy Anthony BROWN
  • Publication number: 20180078734
    Abstract: The present disclosure pertains to a system configured to provide sensory stimulation to a subject (12) during a sleep session. The system includes one or more sensory stimulators (16) configured to provide sensory stimulation to the subject; one or more sensors (18) configured to generate output signals conveying information related to brain activity of the subject; and one or more processors (20) configured to detect individual slow waves in the subject; control the one or more sensory stimulators to provide sensory stimulation to the subject based on the detected individual slow waves; predict a timing for occurrence of a predicted slow wave based on the previously detected individual slow waves; and responsive to not detecting the predicted slow wave at the predicted timing control the one or more sensory stimulators to provide sensory stimulation at the predicted timing for occurrence of the predicted slow wave.
    Type: Application
    Filed: April 14, 2016
    Publication date: March 22, 2018
    Inventors: Stefan PFUNDTNER, Gary Nelson GARCIA MOLINA, Tsvetomira Kirova TSONEVA
  • Publication number: 20150086951
    Abstract: The present invention relates to healthy lifestyle management. In particular to a device for priming a person (10), comprising a detector (2) for detecting when the person (10) expresses or should express a predetermined behavior, a stimulus unit (4) for providing the person (10) with a sensory stimulus (14, 16, 21), and a control unit (3) for controlling said stimulus unit (4) to provide the person (10) with a sensory stimulus (14, 16, 21) when it has been detected that the person expresses a predetermined behavior and to provide the same person (10) with the same sensory stimulus (14, 16, 21) when it has been detected that the person (10) expresses or should express said predetermined behavior. A further aspect of the invention relates to a method for priming a person and a computer program for carrying out said method.
    Type: Application
    Filed: March 29, 2013
    Publication date: March 26, 2015
    Inventors: Murtaza Bulut, Tsvetomira Kirova Tsoneva, Gary Nelson Garcia Molina, Andreea Ioana Sburlea, Marieke Van Dooren, Mirela Alina Weffers-Albu, Mark Christoph Jaeger, Raymond Van Ee
  • Publication number: 20140364683
    Abstract: An illumination system is provided comprising a light source and a controller and being configured to provide an illumination signal (15) for, when perceived by a mammalian, in particular human, subject, inducing relaxing in the subject. The signal comprises a plurality of light pulses (17) having a pulse duration (T17) and being separated by inter-pulse intervals (19). The light pulses are grouped in stimuli (21) which have a stimulus duration (T21) and are separated by inter-stimuli intervals (23). The stimuli are grouped in stimulation sequences (25) which have a stimulation sequence duration (T25) and are separated by inter-sequence intervals (27). An illumination signal, a method, and a computer program product are also provided.
    Type: Application
    Filed: November 23, 2012
    Publication date: December 11, 2014
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: Gary Nelson Garcia Molina, Giovanna Wagenaar Cacciola, Mirela Alina Weffers-Albu, Tsvetomira Kirova Tsoneva
  • Publication number: 20130338738
    Abstract: The present invention relates to a device (30) and a corresponding method for cognitive enhancement of a user (21). For effective cognitive enhancement of the user who is going to execute a cognitive activity the proposed device comprises a light unit (31) for providing an imperceptible light stimulation to the user, and a control unit (32) for controlling said light unit (31) to provide said imperceptible light stimulation less than 5 second before the execution of a cognitive activity by the user.
    Type: Application
    Filed: February 28, 2012
    Publication date: December 19, 2013
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: Gary Nelson Garcia Molina, Tsvetomira Kirova Tsoneva, Davide Baldo, Zhu Danhua, Patrick Hans Arvid Gabrielsson