Patents by Inventor Tu Lin

Tu Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7897449
    Abstract: A method for manufacturing a pixel structure is provided. First, a first mask process is performed to form a patterned first metal layer on a substrate, wherein the patterned first metal layer includes a gate. Next, a second mask process is performed to form a patterned insulating layer and a patterned semiconductor layer over the gate, wherein the patterned insulating layer is disposed on the patterned first metal layer, and the patterned semiconductor layer is disposed on the patterned insulating layer. Then, a third mask process is performed to define a thin film transistor (TFT) and a pixel electrode connected thereto and to form a passivation layer to cover the TFT.
    Type: Grant
    Filed: March 21, 2008
    Date of Patent: March 1, 2011
    Assignee: AU Optronics
    Inventors: Han-Tu Lin, Chien-Hung Chen
  • Patent number: 7897442
    Abstract: A method for fabricating a pixel structure is disclosed. A substrate is provided. A first conductive layer is formed on the substrate, and a first shadow mask exposing a portion of the first conductive layer is disposed over the first conductive layer. Laser is used to irradiate the first conductive layer for removing the part of the first conductive layer and forming a gate. A gate dielectric layer is formed on the substrate to cover the gate. A channel layer is formed on the gate dielectric layer over the gate. A source and a drain are formed on the channel layer and respectively above both sides of the gate. A patterned passivation layer is formed to cover the channel layer and expose the drain. An electrode material layer is formed to cover the patterned passivation layer and the exposed drain.
    Type: Grant
    Filed: April 18, 2008
    Date of Patent: March 1, 2011
    Assignee: Au Optronics Corporation
    Inventors: Ta-Wen Liao, Chih-Chun Yang, Ming-Yuan Huang, Han-Tu Lin, Chih-Hung Shih, Chin-Yueh Liao, Chia-Chi Tsai
  • Patent number: 7898721
    Abstract: A driving voltage adjusting device for a microelectromechanical optical (MEMO) device. The adjusting device comprises a parameter generator and a driving device. The driving device outputs an adjusting driving voltage to the MEMO device to a parameter from the parameter generator.
    Type: Grant
    Filed: January 6, 2005
    Date of Patent: March 1, 2011
    Assignee: AU Optronics Corp.
    Inventors: Feng-Yuan Gan, Han-Tu Lin, Jia-Fam Wong
  • Patent number: 7888190
    Abstract: The invention discloses a switching element of a pixel electrode for a display device and methods for fabricating the same. A gate is formed on a substrate. A first copper silicide layer is formed on the gate. An insulating layer is formed on the first copper silicide layer. A semiconductor layer is formed on the insulating layer. A source and a drain are formed on the semiconductor layer. Moreover, a second copper silicide layer is sandwiched between the semiconductor layer and the source/drain.
    Type: Grant
    Filed: July 10, 2008
    Date of Patent: February 15, 2011
    Assignee: Au Optronics Corp.
    Inventors: Kuo-Lung Fang, Wen-Ching Tsai, Yeong-Shyang Lee, Han-Tu Lin
  • Publication number: 20110012114
    Abstract: A bottom-gate thin film transistor includes a gate electrode, a gate insulating layer and a microcrystalline silicon layer. The gate electrode is disposed on a substrate. The gate insulating layer is made up of silicon nitride and disposed on the gate electrode and the substrate. The microcrystalline silicon layer is disposed on the gate insulating layer and corresponds to the gate electrode, in which a contact interface between the gate insulating layer and the microcrystalline silicon layer has a plurality of oxygen atoms, and concentration of the oxygen atoms ranges between 1020 atoms/cm3 and 1025 atoms/cm3. A method of fabricating a bottom-gate thin film transistor is also disclosed herein.
    Type: Application
    Filed: September 29, 2010
    Publication date: January 20, 2011
    Applicant: AU OPTRONICS CORPORATION
    Inventors: Ya-Hui Peng, Yi-Ya Tseng, Kun-Fu Huang, Chih-Hsien Chen, Han-Tu Lin
  • Patent number: 7842954
    Abstract: An active matrix array structure, disposed on a substrate, includes a first patterned conductive layer, a patterned gate insulating layer, a patterned semiconductor layer, a second patterned conductive layer, a patterned overcoat layer and a transparent conductive layer. The patterned gate insulating layer has first openings that expose a part of the first patterned conductive layer. The patterned semiconductor layer is disposed on the patterned gate insulating layer. The second patterned conductive layer is disposed on the patterned semiconductor layer. The patterned overcoat layer has second openings that expose a part of the first patterned conductive layer and a part of the second patterned conductive layer. The transparent conductive layer is completely disposed on the substrate. The transparent conductive layer disposed in the first openings and the second openings is broken off at a position that is in between the substrate and the patterned overcoat layer.
    Type: Grant
    Filed: May 7, 2010
    Date of Patent: November 30, 2010
    Assignee: Au Optronics Corporation
    Inventors: Wei-Sheng Yu, Kuo-Lung Fang, Hsiang-Lin Lin, Hsien-Chieh Tseng, Han-Tu Lin
  • Patent number: 7834361
    Abstract: A method for manufacturing a pixel structure is provided. First, a first mask process is performed to form a patterned first metal layer on a substrate, wherein the patterned first metal layer includes a gate. Next, a second mask process is performed to form a patterned insulating layer and a patterned semiconductor layer over the gate, wherein the patterned insulating layer is disposed on the patterned first metal layer, and the patterned semiconductor layer is disposed on the patterned insulating layer. Then, a third mask process is performed to define a thin film transistor (TFT) and a pixel electrode connected thereto and to form a passivation layer to cover the TFT.
    Type: Grant
    Filed: November 5, 2009
    Date of Patent: November 16, 2010
    Assignee: AU Optronics
    Inventors: Han-Tu Lin, Chien-Hung Chen
  • Patent number: 7829397
    Abstract: A bottom-gate thin film transistor includes a gate electrode, a gate insulating layer and a microcrystalline silicon layer. The gate electrode is disposed on a substrate. The gate insulating layer is made up of silicon nitride and disposed on the gate electrode and the substrate. The microcrystalline silicon layer is disposed on the gate insulating layer and corresponds to the gate electrode, in which a contact interface between the gate insulating layer and the microcrystalline silicon layer has a plurality of oxygen atoms, and concentration of the oxygen atoms ranges between 1020 atoms/cm3 and 1025 atoms/cm3. A method of fabricating a bottom-gate thin film transistor is also disclosed herein.
    Type: Grant
    Filed: March 9, 2009
    Date of Patent: November 9, 2010
    Assignee: Au Optronics Corporation
    Inventors: Ya-Hui Peng, Yi-Ya Tseng, Kun-Fu Huang, Chih-Hsien Chen, Han-Tu Lin
  • Publication number: 20100279450
    Abstract: An active device array substrate and its fabricating method are provided. According to the subject invention, the elements of an array substrate such as the thin film transistors, gate lines, gate pads, data lines, data pads and storage electrodes, are provided by forming a patterned first metal layer, an insulating layer, a patterned semiconductor layer and a patterned metal multilayer. Furthermore, the subject invention uses the means of selectively etching certain layers. Using the aforesaid means, the array substrate of the subject invention has some layers with under-cut structures, and thus, the number of the time-consuming and complicated mask etching process involved in the production of an array substrate can be reduced. The subject invention provides a relatively simple and time-saving method for producing an array substrate.
    Type: Application
    Filed: July 14, 2010
    Publication date: November 4, 2010
    Applicant: AU OPTRONICS CORP.
    Inventors: Kuo-Lung Fang, Hsiang-Lin Lin, Han-Tu Lin
  • Patent number: 7816159
    Abstract: A method for fabricating a pixel structure includes following steps. First, a substrate is provided. Next, a first conductive layer is formed on the substrate. Next, a first shadow mask is disposed over the first conductive layer. Next, a laser is applied through the first shadow mask to irradiate the first conductive layer to form a gate. Next, a gate dielectric layer is formed on the substrate to cover the gate. After that, a channel layer, a source and a drain are simultaneously formed on the gate dielectric layer over the gate, wherein the gate, the channel layer, the source and the drain together form a thin film transistor. A patterned passivation layer is formed on the thin film transistor and the patterned passivation layer exposes a part of the drain. Furthermore, a pixel electrode electrically connecting to the drain is formed.
    Type: Grant
    Filed: April 18, 2008
    Date of Patent: October 19, 2010
    Assignee: Au Optronics Corporation
    Inventors: Kuo-Lung Fang, Chih-Chun Yang, Ming-Yuan Huang, Han-Tu Lin, Chih-Hung Shih, Ta-Wen Liao, Shiun-Chang Jan, Chia-Chi Tsai
  • Patent number: 7811867
    Abstract: A method for manufacturing a pixel structure is provided. A gate and a gate insulating layer are sequentially formed on a substrate. A semiconductor layer and a second metal layer are sequentially formed on the gate insulating layer. The semiconductor layer and the second metal layer are patterned to form a channel layer, a source and a drain by using a patterned photoresist layer formed thereon, wherein the source and drain are disposed on a portion of the channel layer. The gate, channel, source and drain form a thin film transistor. A passivation layer is formed on the patterned photoresist layer, the gate insulating layer and the thin film transistor. Then, the patterned photoresist layer is removed, such that the passivation layer thereon is removed simultaneously to form a patterned passivation layer and the drain is exposed. A pixel electrode is formed on the patterned passivation layer and the drain.
    Type: Grant
    Filed: November 12, 2009
    Date of Patent: October 12, 2010
    Assignee: Au Optronics Corporation
    Inventors: Chih-Chun Yang, Ming-Yuan Huang, Han-Tu Lin, Chih-Hung Shih, Ta-Wen Liao, Kuo-Lung Fang
  • Patent number: 7786514
    Abstract: The invention discloses a switching device for a pixel electrode of display device. The switching device comprises a gate formed on a substrate; a gate-insulating layer formed on the gate; a first buffer layer formed between the substrate and the gate and/or between the gate and the gate-insulating layer, wherein the first buffer layer comprises TaSix, TaSixNy, TiSix, TiSixNy, WSix, WSixNy, or WCxNy; a semiconductor layer formed on a portion of the gate-insulating layer; and a source and a drain formed on a portion of the semiconductor layer.
    Type: Grant
    Filed: December 26, 2007
    Date of Patent: August 31, 2010
    Assignee: Au Optronics Corp.
    Inventors: Kuo-Lung Fang, Wen-Ching Tsai, Kuo-Yuan Tu, Han-Tu Lin
  • Publication number: 20100213464
    Abstract: An active matrix array structure, disposed on a substrate, includes a first patterned conductive layer, a patterned gate insulating layer, a patterned semiconductor layer, a second patterned conductive layer, a patterned overcoat layer and a transparent conductive layer. The patterned gate insulating layer has first openings that expose a part of the first patterned conductive layer. The patterned semiconductor layer is disposed on the patterned gate insulating layer. The second patterned conductive layer is disposed on the patterned semiconductor layer. The patterned overcoat layer has second openings that expose a part of the first patterned conductive layer and a part of the second patterned conductive layer. The transparent conductive layer is completely disposed on the substrate. The transparent conductive layer disposed in the first openings and the second openings is broken off at a position that is in between the substrate and the patterned overcoat layer.
    Type: Application
    Filed: May 7, 2010
    Publication date: August 26, 2010
    Applicant: AU OPTRONICS CORPORATION
    Inventors: Wei-Sheng Yu, Kuo-Lung Fang, Hsiang-Lin Lin, Hsien-Chieh Tseng, Han-Tu Lin
  • Patent number: 7781776
    Abstract: An active device array substrate and its fabricating method are provided. According to the subject invention, the elements of an array substrate such as the thin film transistors, gate lines, gate pads, data lines, data pads and storage electrodes, are provided by forming a patterned first metal layer, an insulating layer, a patterned semiconductor layer and a patterned metal multilayer. Furthermore, the subject invention uses the means of selectively etching certain layers. Using the aforesaid means, the array substrate of the subject invention has some layers with under-cut structures, and thus, the number of the time-consuming and complicated mask etching process involved in the production of an array substrate can be reduced. The subject invention provides a relatively simple and time-saving method for producing an array substrate.
    Type: Grant
    Filed: August 13, 2008
    Date of Patent: August 24, 2010
    Assignee: AU Optronics Corp.
    Inventors: Kuo-Lung Fang, Hsiang-Lin Lin, Han-Tu Lin
  • Patent number: 7777231
    Abstract: A method for forming a thin film transistor on a substrate is disclosed. A gate electrode and a gate insulation layer are disposed on a surface of the substrate. A deposition process is performed by utilizing hydrogen diluted silane to form a silicon-contained thin film on the gate insulation layer first. A hydrogen plasma etching process is thereafter performed. The deposition process and the etching process are repeated for at least one time to form an interface layer. Finally, an amorphous silicon layer, n+ doped Si layers, a source electrode, and a drain electrode are formed on the interface layer.
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: August 17, 2010
    Assignee: AU Optronics Corp.
    Inventors: Feng-Yuan Gan, Han-Tu Lin
  • Patent number: 7754547
    Abstract: An active matrix array structure, disposed on a substrate, includes a first patterned conductive layer, a patterned gate insulating layer, a patterned semiconductor layer, a second patterned conductive layer, a patterned overcoat layer and a transparent conductive layer. The patterned gate insulating layer has first openings that expose a part of the first patterned conductive layer. The patterned semiconductor layer is disposed on the patterned gate insulating layer. The second patterned conductive layer is disposed on the patterned semiconductor layer. The patterned overcoat layer has second openings that expose a part of the first patterned conductive layer and a part of the second patterned conductive layer. The transparent conductive layer is completely disposed on the substrate. The transparent conductive layer disposed in the first openings and the second openings is broken off at a position that is in between the substrate and the patterned overcoat layer.
    Type: Grant
    Filed: April 14, 2008
    Date of Patent: July 13, 2010
    Assignee: Au Optronics Corporation
    Inventors: Wei-Sheng Yu, Kuo-Lung Fang, Hsiang-Lin Lin, Hsien-Chieh Tseng, Han-Tu Lin
  • Publication number: 20100096630
    Abstract: A bottom-gate thin film transistor includes a gate electrode, a gate insulating layer and a microcrystalline silicon layer. The gate electrode is disposed on a substrate. The gate insulating layer is made up of silicon nitride and disposed on the gate electrode and the substrate. The microcrystalline silicon layer is disposed on the gate insulating layer and corresponds to the gate electrode, in which a contact interface between the gate insulating layer and the microcrystalline silicon layer has a plurality of oxygen atoms, and concentration of the oxygen atoms ranges between 1020 atoms/cm3 and 1025 atoms/cm3. A method of fabricating a bottom-gate thin film transistor is also disclosed herein.
    Type: Application
    Filed: March 9, 2009
    Publication date: April 22, 2010
    Applicant: AU Optronics Corporation
    Inventors: Ya-Hui Peng, Yi-Ya Tseng, Kun-Fu Huang, Chih-Hsien Chen, Han-Tu Lin
  • Publication number: 20100084660
    Abstract: A semiconductor structure is provided. The semiconductor structure includes a substrate, a gate disposed thereon, an insulation layer disposed on the substrate and overlying the gate, a patterned semiconductor layer disposed on the insulation layer, a source and a drain disposed on the patterned semiconductor layer, a protective layer overlying the insulation layer, the source and the boundary of the drain to expose a portion of the drain, and a pixel electrode disposed on the substrate, overlying the protective layer overlying the boundary of the drain, electrically connected to the exposed drain.
    Type: Application
    Filed: December 9, 2009
    Publication date: April 8, 2010
    Applicant: AU OPTRONICS CORP.
    Inventors: Kuo-Lung Fang, Chih-Chun Yang, Han-Tu Lin
  • Patent number: 7682884
    Abstract: A method for fabricating a pixel structure using a laser ablation process is provided. This fabrication method forms a gate, a channel layer, a source, a drain, a passivation layer, and a pixel electrode sequentially by using a laser ablation process. Particularly, the fabrication method is not similar to a photolithography and etching process, so as to reduce the complicated photolithography and etching processes, such as spin coating process, soft-bake, hard-bake, exposure, developing, etching, and stripping. Therefore, the fabrication method simplifies the process and thus reduces the fabrication cost.
    Type: Grant
    Filed: January 22, 2008
    Date of Patent: March 23, 2010
    Assignee: Au Optronics Corporation
    Inventors: Han-Tu Lin, Chih-Chun Yang, Ming-Yuan Huang, Chih-Hung Shih, Ta-Wen Liao, Chia-Chi Tsai
  • Patent number: 7679088
    Abstract: A fabrication method of a TFT includes successively forming four thin films containing a first conductive layer, an insulation layer, a semiconductor layer, and a second conductive layer on a substrate, performing a first PEP process to pattern the four thin films for forming a semiconductor island and a gate electrode with the semiconductor layer and the first conductive layer respectively. Then, a laser ablation process is performed to define a channel pattern in the four thin films and remove a portion of the second conductive layer so that unconnected source electrode and drain electrode are formed with the second conductive layer.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: March 16, 2010
    Assignee: AU Optronics Corp.
    Inventor: Han-Tu Lin