Patents by Inventor Tu Tam VU

Tu Tam VU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10008469
    Abstract: An apparatus relates generally to a microelectronic package. In such an apparatus, a microelectronic die has a first surface, a second surface opposite the first surface, and a sidewall surface between the first and second surfaces. A plurality of wire bond wires with proximal ends thereof are coupled to either the first surface or the second surface of the microelectronic die with distal ends of the plurality of wire bond wires extending away from either the first surface or the second surface, respectively, of the microelectronic die. A portion of the plurality of wire bond wires extends outside a perimeter of the microelectronic die into a fan-out (“FO”) region. A molding material covers the first surface, the sidewall surface, and portions of the plurality of the wire bond wires from the first surface of the microelectronic die to an outer surface of the molding material.
    Type: Grant
    Filed: November 21, 2016
    Date of Patent: June 26, 2018
    Assignee: Invensas Corporation
    Inventors: Rajesh Katkar, Tu Tam Vu, Bongsub Lee, Kyong-Mo Bang, Xuan Li, Long Huynh, Gabriel Z. Guevara, Akash Agrawal, Willmar Subido, Laura Wills Mirkarimi
  • Patent number: 9859257
    Abstract: Stacked microelectronic packages comprise microelectronic elements each having a contact-bearing front surface and edge surfaces extending away therefrom, and a dielectric encapsulation region contacting an edge surface. The encapsulation defines first and second major surfaces of the package and a remote surface between the major surfaces. Package contacts at the remote surface include a first set of contacts at positions closer to the first major surface than a second set of contacts, which instead are at positions closer to the second major surface. The packages are configured such that major surfaces of each package can be oriented in a nonparallel direction with the major surface of a substrate, the package contacts electrically coupled to corresponding contacts at the substrate surface. The package stacking and orientation can provide increased packing density.
    Type: Grant
    Filed: November 22, 2016
    Date of Patent: January 2, 2018
    Assignee: Invensas Corporation
    Inventors: Javier A. Delacruz, Belgacem Haba, Tu Tam Vu, Rajesh Katkar
  • Patent number: 9847238
    Abstract: Fan-out wafer-level packaging (WLP) using metal foil lamination is provided. An example wafer-level package incorporates a metal foil, such as copper (Cu), to relocate bonding pads in lieu of a conventional deposited or plated RDL. A polymer such as an epoxy layer adheres the metal foil to the package creating conductive contacts between the metal foil and metal pillars of a die. The metal foil may be patterned at different stages of a fabrication process. An example wafer-level package with metal foil provides relatively inexpensive electroplating-free traces that replace expensive RDL processes. Example techniques can reduce interfacial stress at fan-out areas to enhance package reliability, and enable smaller chips to be used. The metal foil provides improved fidelity of high frequency signals. The metal foil can be bonded to metallic pillar bumps before molding, resulting in less impact on the mold material.
    Type: Grant
    Filed: February 27, 2017
    Date of Patent: December 19, 2017
    Assignee: Invensas Corporation
    Inventors: Xuan Li, Rajesh Katkar, Long Huynh, Laura Wills Mirkarimi, Bongsub Lee, Gabriel Z. Guevara, Tu Tam Vu, Kyong-Mo Bang, Akash Agrawal
  • Publication number: 20170179081
    Abstract: Stacked microelectronic packages comprise microelectronic elements each having a contact-bearing front surface and edge surfaces extending away therefrom, and a dielectric encapsulation region contacting an edge surface. The encapsulation defines first and second major surfaces of the package and a remote surface between the major surfaces. Package contacts at the remote surface include a first set of contacts at positions closer to the first major surface than a second set of contacts, which instead are at positions closer to the second major surface. The packages are configured such that major surfaces of each package can be oriented in a nonparallel direction with the major surface of a substrate, the package contacts electrically coupled to corresponding contacts at the substrate surface. The package stacking and orientation can provide increased packing density.
    Type: Application
    Filed: November 22, 2016
    Publication date: June 22, 2017
    Inventors: Javier A. Delacruz, Belgacem Haba, Tu Tam Vu, Rajesh Katkar
  • Publication number: 20170170031
    Abstract: Fan-out wafer-level packaging (WLP) using metal foil lamination is provided. An example wafer-level package incorporates a metal foil, such as copper (Cu), to relocate bonding pads in lieu of a conventional deposited or plated RDL. A polymer such as an epoxy layer adheres the metal foil to the package creating conductive contacts between the metal foil and metal pillars of a die. The metal foil may be patterned at different stages of a fabrication process. An example wafer-level package with metal foil provides relatively inexpensive electroplating-free traces that replace expensive RDL processes. Example techniques can reduce interfacial stress at fan-out areas to enhance package reliability, and enable smaller chips to be used. The metal foil provides improved fidelity of high frequency signals. The metal foil can be bonded to metallic pillar bumps before molding, resulting in less impact on the mold material.
    Type: Application
    Filed: February 27, 2017
    Publication date: June 15, 2017
    Applicant: Invensas Corporation
    Inventors: Xuan Li, Rajesh Katkar, Long Huynh, Laura Wills Mirkarimi, Bongsub Lee, Gabriel Z. Guevara, Tu Tam Vu, Kyong-Mo Bang, Akash Agrawal
  • Patent number: 9646946
    Abstract: Fan-out wafer-level packaging (WLP) using metal foil lamination is provided. An example wafer-level package incorporates a metal foil, such as copper (Cu), to relocate bonding pads in lieu of a conventional deposited or plated RDL. A polymer such as an epoxy layer adheres the metal foil to the package creating conductive contacts between the metal foil and metal pillars of a die. The metal foil may be patterned at different stages of a fabrication process. An example wafer-level package with metal foil provides relatively inexpensive electroplating-free traces that replace expensive RDL processes. Example techniques can reduce interfacial stress at fan-out areas to enhance package reliability, and enable smaller chips to be used. The metal foil provides improved fidelity of high frequency signals. The metal foil can be bonded to metallic pillar bumps before molding, resulting in less impact on the mold material.
    Type: Grant
    Filed: October 7, 2015
    Date of Patent: May 9, 2017
    Assignee: Invensas Corporation
    Inventors: Xuan Li, Rajesh Katkar, Long Huynh, Laura Wills Mirkarimi, Bongsub Lee, Gabriel Z. Guevara, Tu Tam Vu, Kyong-Mo Bang, Akash Agrawal
  • Publication number: 20170103957
    Abstract: Fan-out wafer-level packaging (WLP) using metal foil lamination is provided. An example wafer-level package incorporates a metal foil, such as copper (Cu), to relocate bonding pads in lieu of a conventional deposited or plated RDL. A polymer such as an epoxy layer adheres the metal foil to the package creating conductive contacts between the metal foil and metal pillars of a die. The metal foil may be patterned at different stages of a fabrication process. An example wafer-level package with metal foil provides relatively inexpensive electroplating-free traces that replace expensive RDL processes. Example techniques can reduce interfacial stress at fan-out areas to enhance package reliability, and enable smaller chips to be used. The metal foil provides improved fidelity of high frequency signals. The metal foil can be bonded to metallic pillar bumps before molding, resulting in less impact on the mold material.
    Type: Application
    Filed: October 7, 2015
    Publication date: April 13, 2017
    Applicant: Invensas Corporation
    Inventors: Xuan Li, Rajesh Katkar, Long Huynh, Laura Wills Mirkarimi, Bongsub Lee, Gabriel Z. Guevara, Tu Tam Vu, Kyong-Mo Bang, Akash Agrawal
  • Publication number: 20170069591
    Abstract: An apparatus relates generally to a microelectronic package. In such an apparatus, a microelectronic die has a first surface, a second surface opposite the first surface, and a sidewall surface between the first and second surfaces. A plurality of wire bond wires with proximal ends thereof are coupled to either the first surface or the second surface of the microelectronic die with distal ends of the plurality of wire bond wires extending away from either the first surface or the second surface, respectively, of the microelectronic die. A portion of the plurality of wire bond wires extends outside a perimeter of the microelectronic die into a fan-out (“FO”) region. A molding material covers the first surface, the sidewall surface, and portions of the plurality of the wire bond wires from the first surface of the microelectronic die to an outer surface of the molding material.
    Type: Application
    Filed: November 21, 2016
    Publication date: March 9, 2017
    Applicant: Invensas Corporation
    Inventors: Rajesh Katkar, Tu Tam Vu, Bongsub Lee, Kyong-Mo Bang, Xuan Li, Long Huynh, Gabriel Z. Guevara, Akash Agrawal, Willmar Subido, Laura Wills Mirkarimi
  • Patent number: 9543277
    Abstract: A fan-out microelectronic package is provided in which bond wires electrically couple bond pads on a microelectronic element, e.g., a semiconductor chip which may have additional traces thereon, with contacts at a fan-out area of a dielectric element adjacent an edge surface of the chip. The bond wires mechanically decouple the microelectronic element from the fan-out area, which can make the electrical interconnections less prone to reliability issues due to effects of differential thermal expansion, such as caused by temperature excursions during initial package fabrication, bonding operations or thermal cycling. In addition, mechanical decoupling provided by the bond wires may also remedy other mechanical issues such as shock and possible delamination of package elements.
    Type: Grant
    Filed: August 20, 2015
    Date of Patent: January 10, 2017
    Assignee: Invensas Corporation
    Inventors: Bongsub Lee, Tu Tam Vu, Rajesh Katkar, Laura Wills Mirkarimi, Akash Agrawal, Kyong-Mo Bang, Gabriel Z. Guevara, Xuan Li, Long Huynh
  • Patent number: 9508691
    Abstract: Stacked microelectronic packages comprise microelectronic elements each having a contact-bearing front surface and edge surfaces extending away therefrom, and a dielectric encapsulation region contacting an edge surface. The encapsulation defines first and second major surfaces of the package and a remote surface between the major surfaces. Package contacts at the remote surface include a first set of contacts at positions closer to the first major surface than a second set of contacts, which instead are at positions closer to the second major surface. The packages are configured such that major surfaces of each package can be oriented in a nonparallel direction with the major surface of a substrate, the package contacts electrically coupled to corresponding contacts at the substrate surface. The package stacking and orientation can provide increased packing density.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: November 29, 2016
    Assignee: Invensas Corporation
    Inventors: Javier A. Delacruz, Belgacem Haba, Tu Tam Vu, Rajesh Katkar
  • Patent number: 9502372
    Abstract: An apparatus relates generally to a microelectronic package. In such an apparatus, a microelectronic die has a first surface, a second surface opposite the first surface, and a sidewall surface between the first and second surfaces. A plurality of wire bond wires with proximal ends thereof are coupled to either the first surface or the second surface of the microelectronic die with distal ends of the plurality of wire bond wires extending away from either the first surface or the second surface, respectively, of the microelectronic die. A portion of the plurality of wire bond wires extends outside a perimeter of the microelectronic die into a fan-out (“FO”) region. A molding material covers the first surface, the sidewall surface, and portions of the plurality of the wire bond wires from the first surface of the microelectronic die to an outer surface of the molding material.
    Type: Grant
    Filed: April 30, 2015
    Date of Patent: November 22, 2016
    Assignee: Invensas Corporation
    Inventors: Rajesh Katkar, Tu Tam Vu, Bongsub Lee, Kyong-Mo Bang, Xuan Li, Long Huynh, Gabriel Z. Guevara, Akash Agrawal, Willmar Subido, Laura Wills Mirkarimi
  • Publication number: 20160322326
    Abstract: An apparatus relates generally to a microelectronic package. In such an apparatus, a microelectronic die has a first surface, a second surface opposite the first surface, and a sidewall surface between the first and second surfaces. A plurality of wire bond wires with proximal ends thereof are coupled to either the first surface or the second surface of the microelectronic die with distal ends of the plurality of wire bond wires extending away from either the first surface or the second surface, respectively, of the microelectronic die. A portion of the plurality of wire bond wires extends outside a perimeter of the microelectronic die into a fan-out (“FO”) region. A molding material covers the first surface, the sidewall surface, and portions of the plurality of the wire bond wires from the first surface of the microelectronic die to an outer surface of the molding material.
    Type: Application
    Filed: April 30, 2015
    Publication date: November 3, 2016
    Applicant: INVENSAS CORPORATION
    Inventors: Rajesh KATKAR, Tu Tam VU, Bongsub LEE, Kyong-Mo BANG, Xuan LI, Long HUYNH, Gabriel Z. GUEVARA, Akash AGRAWAL, Willmar SUBIDO, Laura Wills MIRKARIMI