Patents by Inventor Tuerxun Ailihumaer

Tuerxun Ailihumaer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240102157
    Abstract: Embodiments of the disclosure are directed to methods of depositing a molybdenum film directly on a substrate surface (e.g., a low-K dielectric material) by exposing the substrate surface to a molybdenum-containing precursor and a plasma at a temperature of less than or equal to 400° C. The molybdenum-containing precursor comprises one or more of molybdenum pentachloride (MoCl5), molybdenum dioxide dichloride (MoO2Cl2), molybdenum oxytetrachloride (MoOCl4), molybdenum hexacarbonyl, bis(tert-butylimido)-bis(dimethylamido)molybdenum, or bis(ethylbenzene) molybdenum. The plasma comprises one or more of hydrogen (H2), nitrogen (N2), or a silane (SixHy). In some embodiments, when the molybdenum-containing precursor comprises molybdenum hexafluoride (MoF6), the plasma does not include hydrogen (H2).
    Type: Application
    Filed: September 22, 2022
    Publication date: March 28, 2024
    Applicant: Applied Materials, Inc.
    Inventors: TUERXUN AILIHUMAER, Srinivas Gandikota, Yixiong Yang, Yogesh Sharma, Ashutosh Agarwal, Mandyam Sriram
  • Publication number: 20240060175
    Abstract: Embodiments of the disclosure provide conformally deposited molybdenum films having reduced resistivity and methods of forming the same. The methods include forming a nucleation layer directly on a dielectric layer on a substrate surface by exposing the substrate surface to a molybdenum-containing precursor and a nucleation reactant, and conformally depositing a molybdenum film on the nucleation layer. Another aspect of the disclosure pertains to a method that is part of a gap fill process, comprising forming a nucleation layer directly on a dielectric region within one or more high aspect ratio gap features, including vertical gap features and/or horizontal gap features, and conformally depositing a molybdenum film on the nucleation layer to fill the feature.
    Type: Application
    Filed: August 19, 2022
    Publication date: February 22, 2024
    Applicant: Applied Materials, Inc.
    Inventors: Srinivas Gandikota, Yixiong Yang, Yong Yang, Tuerxun Ailihumaer, Yogesh Sharma, Kunal Bhatnagar, Mohith Verghese
  • Publication number: 20240026529
    Abstract: Embodiments of the disclosure provide conformally deposited molybdenum films having reduced resistivity and methods of forming the same. The methods include converting an amorphous silicon layer to a metal layer by thermally soaking the amorphous silicon layer comprising silicon atoms in the presence of a metal compound selected from the group consisting of a molybdenum compound and a tungsten compound until at least a portion of the silicon atoms in the amorphous silicon layer are replaced by metal atoms selected from the group consisting of molybdenum atoms and tungsten atoms. The methods include conformally depositing a molybdenum film on the metal layer.
    Type: Application
    Filed: July 17, 2023
    Publication date: January 25, 2024
    Applicant: Applied Materials, Inc.
    Inventors: Srinivas Gandikota, Tuerxun Ailihumaer, Yixiong Yang, Seshadri Ganguli, Yogesh Sharma
  • Publication number: 20230323543
    Abstract: Embodiments of the disclosure advantageously provide in situ selectively deposited molybdenum films having reduced resistivity and methods of reducing or eliminating lateral growth of a selectively deposited molybdenum layer. Additional embodiments provide integrated clean and deposition processes which improve the selectivity of in situ selectively deposited molybdenum films on features, such as a via. Further embodiments advantageously provide methods of improving uniformity and selectivity of bottom-up gap fill for vias with improved film properties.
    Type: Application
    Filed: April 6, 2022
    Publication date: October 12, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Tuerxun Ailihumaer, Yixiong Yang, Annamalai Lakshmanan, Srinivas Gandikota, Yogesh Sharma, Pei Hsuan Lin, Yi Xu, Zhimin Qi, Aixi Zhang, Shiyu Yue, Yu Lei
  • Publication number: 20230326744
    Abstract: Embodiments of the disclosure relate to methods for bottom-up metal gapfill without substantial deposition outside of the feature. Additional embodiments provide a method of forming a metal material on the top surface of the substrate and the bottom of the feature before depositing the metal gapfill.
    Type: Application
    Filed: April 6, 2022
    Publication date: October 12, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Annamalai Lakshmanan, Yixiong Yang, Srinivas Gandikota, Joung Joo Lee, Liqi Wu, Jie Zhang, Tuerxun Ailihumaer, Yogesh Sharma
  • Publication number: 20230295804
    Abstract: Methods of depositing a metal film by exposing a substrate surface to a halide precursor and an organosilane reactant are described. The halide precursor comprises a compound of general formula (I): MQzRm, wherein M is a metal, Q is a halogen selected from Cl, Br, F or I, z is from 1 to 6, R is selected from alkyl, CO, and cyclopentadienyl, and m is from 0 to 6. The aluminum reactant comprises a compound of general formula (II) or general formula (III): wherein R1, R2, R3, R4, R5, R6, R7, R8, Ra, Rb, Rc, Rd, Re, and Rf are independently selected from hydrogen (H), substituted alkyl or unsubstituted alkyl; and X, Y, X?, and Y? are independently selected from nitrogen (N) and carbon (C).
    Type: Application
    Filed: May 2, 2023
    Publication date: September 21, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Srinivas Gandikota, Geetika Bajaj, Yixiong Yang, Seshadri Ganguli, Tuerxun Ailihumaer, Yogesh Sharma, Tianyi Huang