Patents by Inventor Tung-Chin Hsieh

Tung-Chin Hsieh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11933849
    Abstract: The present disclosure provides an inductance detection method includes steps of: (a) acquiring a stator resistance of the reluctance motor; (b) injecting a high-frequency sinusoidal signal in the d-axis or q-axis direction; (c) injecting an align signal command in the q-axis or d-axis direction; (d) receiving a dq-axes signal generated through injecting the high-frequency sinusoidal signal and the align signal command; (e) sampling a motor feedback signal generated through receiving the dq-axes signal; (f) in the direction of injecting the high-frequency sinusoidal signal, calculating an amplitude difference between the high-frequency sinusoidal signal and the motor feedback signal, and adjusting an amplitude of the high-frequency sinusoidal signal according to the amplitude difference for regulating a feedback amplitude of the motor feedback signal; and (g) when the feedback amplitude reaching an expected amplitude, calculating an apparent inductance of the reluctance motor based on the dq-axes signal, the
    Type: Grant
    Filed: May 19, 2022
    Date of Patent: March 19, 2024
    Assignee: DELTA ELECTRONICS, INC.
    Inventors: Yu-Shian Lin, Tung-Chin Hsieh, Ming-Tsung Chen
  • Publication number: 20230228819
    Abstract: The present disclosure provides an inductance detection method includes steps of: (a) acquiring a stator resistance of the reluctance motor; (b) injecting a high-frequency sinusoidal signal in the d-axis or q-axis direction; (c) injecting an align signal command in the q-axis or d-axis direction; (d) receiving a dq-axes signal generated through injecting the high-frequency sinusoidal signal and the align signal command; (e) sampling a motor feedback signal generated through receiving the dq-axes signal; (f) in the direction of injecting the high-frequency sinusoidal signal, calculating an amplitude difference between the high-frequency sinusoidal signal and the motor feedback signal, and adjusting an amplitude of the high-frequency sinusoidal signal according to the amplitude difference for regulating a feedback amplitude of the motor feedback signal; and (g) when the feedback amplitude reaching an expected amplitude, calculating an apparent inductance of the reluctance motor based on the dq-axes signal, the
    Type: Application
    Filed: May 19, 2022
    Publication date: July 20, 2023
    Inventors: Yu-Shian Lin, Tung-Chin Hsieh, Ming-Tsung Chen
  • Patent number: 10411629
    Abstract: A control method for controlling a synchronous motor includes calculating d-axis and q-axis current commands according to a frequency command and frequency of the synchronous motor by a MTPA control unit; when a feedback output voltage of the synchronous motor is larger than a control level, outputting a flux-weakening current command by a voltage control unit; calculating a flux-weakening current feed-forward value according to the frequency, a target level and the q-axis current command by a feed-forward control unit; when the sum of the flux-weakening current command and the flux-weakening current feed-forward value is smaller than the d-axis current command, adjusting the d-axis current command by the sum of the flux-weakening current command and the flux-weakening current feed-forward value; and outputting d-axis and q-axis voltage commands according to the adjusted d-axis current command and the q-axis current command to control the synchronous motor.
    Type: Grant
    Filed: April 5, 2017
    Date of Patent: September 10, 2019
    Assignee: DELTA ELECTRONICS, INC.
    Inventors: Yu-Ling Lee, Ming-Tsung Chen, Tung-Chin Hsieh
  • Publication number: 20180109217
    Abstract: A control method for controlling a synchronous motor includes calculating d-axis and q-axis current commands according to a frequency command and frequency of the synchronous motor by a MTPA control unit; when a feedback output voltage of the synchronous motor is larger than a control level, outputting a flux-weakening current command by a voltage control unit; calculating a flux-weakening current feed-forward value according to the frequency, a target level and the q-axis current command by a feed-forward control unit; when the sum of the flux-weakening current command and the flux-weakening current feed-forward value is smaller than the d-axis current command, adjusting the d-axis current command by the sum of the flux-weakening current command and the flux-weakening current feed-forward value; and outputting d-axis and q-axis voltage commands according to the adjusted d-axis current command and the q-axis current command to control the synchronous motor.
    Type: Application
    Filed: April 5, 2017
    Publication date: April 19, 2018
    Inventors: Yu-Ling LEE, Ming-Tsung CHEN, Tung-Chin HSIEH
  • Patent number: 7898210
    Abstract: After an AC motor generates a three-phase current, modulate the three-phase current to generate an original voltage space vector, and add three detecting vectors with a sum of zero after the original voltage space vector. While adding the three detecting vectors, sample the current to generate a sampling result. Then adjust the width of pulses generated by a pulse width modulator according to the sampling result.
    Type: Grant
    Filed: August 15, 2008
    Date of Patent: March 1, 2011
    Assignee: Prolific Technology Inc.
    Inventors: Tung-Chin Hsieh, Kuang-Yao Cheng
  • Publication number: 20090212733
    Abstract: After an AC motor generates a three-phase current, modulate the three-phase current to generate an original voltage space vector, and add three detecting vectors with a sum of zero after the original voltage space vector. While adding the three detecting vectors, sample the current to generate a sampling result. Then adjust the width of pulses generated by a pulse width modulator according to the sampling result.
    Type: Application
    Filed: August 15, 2008
    Publication date: August 27, 2009
    Inventors: Tung-Chin Hsieh, Kuang-Yao Cheng