Patents by Inventor Tung-Lin Chuang

Tung-Lin Chuang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11508877
    Abstract: A red light emitting diode including an epitaxial stacked layer, a first and a second electrodes and a first and a second electrode pads is provided. The epitaxial stacked layer includes a first-type and a second-type semiconductor layers and a light emitting layer. A main light emitting wavelength of the light emitting layer falls in a red light range. The epitaxial stacked layer has a first side adjacent to the first semiconductor layer and a second side adjacent to the second semiconductor layer. The first and the second electrodes are respectively electrically connected to the first-type and the second-type semiconductor layers, and respectively located to the first and the second sides. The first and a second electrode pads are respectively disposed on the first and the second electrodes and respectively electrically connected to the first and the second electrodes. The first and the second electrode pads are located at the first side of the epitaxial stacked layer.
    Type: Grant
    Filed: March 23, 2020
    Date of Patent: November 22, 2022
    Assignee: Genesis Photonics Inc.
    Inventors: Tung-Lin Chuang, Yi-Ru Huang, Yu-Chen Kuo, Chih-Ming Shen, Tsung-Syun Huang, Jing-En Huang
  • Patent number: 11393955
    Abstract: A light emitting diode (LED) including an epitaxial stacked layer, first and second reflective layers which are disposed at two sides of the epitaxial stacked layer, a current conducting layer and first and second electrodes and a manufacturing thereof are provided. The epitaxial stacked layer includes a first-type and a second-type semiconductor layers and an active layer. A main light emitting surface with a light transmittance >0% and ?10% is formed on one of the two reflective layers. The current conducting layer contacts the second-type semiconductor layer. The first electrode is electrically connected to the first-type semiconductor layer. The second electrode is electrically connected to the second-type semiconductor layer via the current conducting layer. A contact scope of the current conducting layer and the second-type semiconductor layer is served as a light-emitting scope overlapping the two layers, but not overlapping the two electrodes.
    Type: Grant
    Filed: December 6, 2019
    Date of Patent: July 19, 2022
    Assignee: Genesis Photonics Inc.
    Inventors: Yi-Ru Huang, Kai-Shun Kang, Tung-Lin Chuang, Yu-Chen Kuo, Yan-Ting Lan, Chih-Ming Shen, Jing-En Huang
  • Patent number: 11342488
    Abstract: A light emitting diode chip including an epitaxy stacked layer, first and second electrodes and a first reflective layer is provided. The epitaxy stacked layer includes first-type and second-type semiconductor layers and a light-emitting layer. The first and second electrodes are respectively electrically connected to the first-type and second-type semiconductor layers. An orthogonal projection of the light-emitting layer on the first-type semiconductor layer is misaligned with an orthogonal projection of the first electrode on the first-type semiconductor layer. The first reflective layer is disposed on the epitaxy stacked layer, the first and second electrodes. An orthogonal projection of the first reflective layer on the second-type semiconductor layer is misaligned with an orthogonal projection of the second electrode on the second-type semiconductor layer. Furthermore, a light emitting diode device is also provided.
    Type: Grant
    Filed: August 5, 2019
    Date of Patent: May 24, 2022
    Assignee: Genesis Photonics Inc.
    Inventors: Tung-Lin Chuang, Yi-Ru Huang, Yu-Chen Kuo, Yan-Ting Lan, Chih-Ming Shen, Jing-En Huang
  • Publication number: 20210391519
    Abstract: A light emitting device includes a growth substrate, a light emitting component, a first conductive bump and a second conductive bump. The light emitting component is disposed on the growth substrate, including a first type semiconductor layer, a second type semiconductor layer, a light emitting layer, an ohmic contact layer, a first conductor layer, and a second conductor layer. The light emitting layer and the second type semiconductor layer are penetrated by a trench. The ohmic contact layer is disposed on the first type semiconductor layer and is disposed in the trench. The ohmic contact layer is electrically connected to the first type semiconductor layer. The first conductor layer is disposed on the first type semiconductor layer and is disposed in the trench. The first conductor layer covers the ohmic contact layer. The second conductor layer is disposed on the second type semiconductor layer, and is electrically connected to the second type semiconductor layer.
    Type: Application
    Filed: June 10, 2021
    Publication date: December 16, 2021
    Applicant: Genesis Photonics Inc.
    Inventors: Yi-Ru Huang, Tung-Lin Chuang, Chi-Hao Cheng
  • Publication number: 20200357955
    Abstract: A red light emitting diode including an epitaxial stacked layer, a first and a second electrodes and a first and a second electrode pads is provided. The epitaxial stacked layer includes a first-type and a second-type semiconductor layers and a light emitting layer. A main light emitting wavelength of the light emitting layer falls in a red light range. The epitaxial stacked layer has a first side adjacent to the first semiconductor layer and a second side adjacent to the second semiconductor layer. The first and the second electrodes are respectively electrically connected to the first-type and the second-type semiconductor layers, and respectively located to the first and the second sides. The first and a second electrode pads are respectively disposed on the first and the second electrodes and respectively electrically connected to the first and the second electrodes. The first and the second electrode pads are located at the first side of the epitaxial stacked layer.
    Type: Application
    Filed: March 23, 2020
    Publication date: November 12, 2020
    Applicant: Genesis Photonics Inc.
    Inventors: Tung-Lin Chuang, Yi-Ru Huang, Yu-Chen Kuo, Chih-Ming Shen, Tsung-Syun Huang, Jing-En Huang
  • Publication number: 20200274027
    Abstract: A light emitting diode and manufacturing method thereof are provided. The light emitting diode includes a first-type semiconductor layer, a light emitting layer, a second-type semiconductor layer, a first metal layer, a first current conducting layer, a first bonding layer and a second current conducting layer. The light emitting layer is located between the first-type semiconductor layer and the second-type semiconductor layer. The first metal layer is located on and electrically connected to the first-type semiconductor layer. The first metal layer is located between the first current conducting layer and the first-type semiconductor layer. The first current conducting layer is located between the first bonding layer and the first metal layer. The first current conducting layer is connected to the first-type semiconductor layer by the first current conducting layer and the first metal layer. The first bonding layer has through holes overlapped with the first metal layer.
    Type: Application
    Filed: February 17, 2020
    Publication date: August 27, 2020
    Applicant: Genesis Photonics Inc.
    Inventors: Yi-Ru Huang, Yu-Chen Kuo, Sheng-Tsung Hsu, Chih-Ming Shen, Yao-Tang Li, Tung-Lin Chuang, Tsung-Syun Huang, Jing-En Huang
  • Patent number: 10734551
    Abstract: The invention provides an LED including a first-type semiconductor layer, an emitting layer, a second-type semiconductor layer, a first electrode, a second electrode, a Bragg reflector structure, a conductive layer and insulation patterns. The first electrode and the second electrode are located on the same side of the Bragg reflector structure. The conductive layer is disposed between the Bragg reflector structure and the second-type semiconductor layer. The insulation patterns are disposed between the conductive layer and the second-type semiconductor layer. Each insulating layer has a first surface facing toward the second-type semiconductor layer, a second surface facing away from the second-type semiconductor layer, and an inclined surface. The inclined surface connects the first surface and the second surface and is inclined with respect to the first surface and the second surface.
    Type: Grant
    Filed: October 21, 2019
    Date of Patent: August 4, 2020
    Assignee: Genesis Photonics Inc.
    Inventors: Yi-Ru Huang, Tung-Lin Chuang, Yan-Ting Lan, Sheng-Tsung Hsu, Chih-Ming Shen, Jing-En Huang, Teng-Hsien Lai, Hung-Chuan Mai, Kuan-Chieh Huang, Shao-Ying Ting, Cheng-Pin Chen, Wei-Chen Chien, Chih-Chin Cheng, Chih-Hung Tseng
  • Publication number: 20200220050
    Abstract: A light emitting diode (LED) including an epitaxial stacked layer, first and second reflective layers which are disposed at two sides of the epitaxial stacked layer, a current conducting layer and first and second electrodes and a manufacturing thereof are provided. The epitaxial stacked layer includes a first-type and a second-type semiconductor layers and an active layer. A main light emitting surface with a light transmittance >0% and ?10% is formed on one of the two reflective layers. The current conducting layer contacts the second-type semiconductor layer. The first electrode is electrically connected to the first-type semiconductor layer. The second electrode is electrically connected to the second-type semiconductor layer via the current conducting layer. A contact scope of the current conducting layer and the second-type semiconductor layer is served as a light-emitting scope overlapping the two layers, but not overlapping the two electrodes.
    Type: Application
    Filed: December 6, 2019
    Publication date: July 9, 2020
    Applicant: Genesis Photonics Inc.
    Inventors: Yi-Ru Huang, Kai-Shun Kang, Tung-Lin Chuang, Yu-Chen Kuo, Yan-Ting Lan, Chih-Ming Shen, Jing-En Huang
  • Patent number: 10608144
    Abstract: Provided is a light emitting diode (LED) mounted on a carrier substrate and including a semiconductor epitaxial structure and at least one electrode pad structure. The semiconductor epitaxial structure is electrically connected to the carrier substrate. The electrode pad structure includes a eutectic layer, a barrier layer and a ductility layer. The eutectic layer is adapted for eutectic bonding to the carrier substrate. The barrier layer is between the eutectic layer and the semiconductor epitaxial structure. The barrier layer blocks the diffusion of the material of the eutectic layer in the eutectic bonding process. The ductility layer is between the eutectic layer and the semiconductor epitaxial structure. The ductility layer reduces the stress on the LED produced by thermal expansion and contraction of the substrate during the eutectic bonding process, so as to prevent the electrode pad structure from cracking, and maintain the quality of the LED.
    Type: Grant
    Filed: May 9, 2018
    Date of Patent: March 31, 2020
    Assignee: Genesis Photonics Inc.
    Inventors: Yi-Ru Huang, Tung-Lin Chuang, Chih-Ming Shen, Sheng-Tsung Hsu, Kuan-Chieh Huang, Jing-En Huang, Shao-Ying Ting
  • Publication number: 20200075821
    Abstract: A light emitting diode chip including an epitaxy stacked layer, first and second electrodes and a first reflective layer is provided. The epitaxy stacked layer includes first-type and second-type semiconductor layers and a light-emitting layer. The first and second electrodes are respectively electrically connected to the first-type and second-type semiconductor layers. An orthogonal projection of the light-emitting layer on the first-type semiconductor layer is misaligned with an orthogonal projection of the first electrode on the first-type semiconductor layer. The first reflective layer is disposed on the epitaxy stacked layer, the first and second electrodes. An orthogonal projection of the first reflective layer on the second-type semiconductor layer is misaligned with an orthogonal projection of the second electrode on the second-type semiconductor layer. Furthermore, a light emitting diode device is also provided.
    Type: Application
    Filed: August 5, 2019
    Publication date: March 5, 2020
    Applicant: Genesis Photonics Inc.
    Inventors: Tung-Lin Chuang, Yi-Ru Huang, Yu-Chen Kuo, Yan-Ting Lan, Chih-Ming Shen, Jing-En Huang
  • Publication number: 20200052159
    Abstract: The invention provides an LED including a first-type semiconductor layer, an emitting layer, a second-type semiconductor layer, a first electrode, a second electrode, a Bragg reflector structure, a conductive layer and insulation patterns. The first electrode and the second electrode are located on the same side of the Bragg reflector structure. The conductive layer is disposed between the Bragg reflector structure and the second-type semiconductor layer. The insulation patterns are disposed between the conductive layer and the second-type semiconductor layer. Each insulating layer has a first surface facing toward the second-type semiconductor layer, a second surface facing away from the second-type semiconductor layer, and an inclined surface. The inclined surface connects the first surface and the second surface and is inclined with respect to the first surface and the second surface.
    Type: Application
    Filed: October 21, 2019
    Publication date: February 13, 2020
    Applicant: Genesis Photonics Inc.
    Inventors: Yi-Ru Huang, Tung-Lin Chuang, Yan-Ting Lan, Sheng-Tsung Hsu, Chih-Ming Shen, Jing-En Huang, Teng-Hsien Lai, Hung-Chuan Mai, Kuan-Chieh Huang, Shao-Ying Ting, Cheng-Pin Chen, Wei-Chen Chien, Chih-Chin Cheng, Chih-Hung Tseng
  • Patent number: 10453999
    Abstract: The invention provides an LED including a first-type semiconductor layer, an emitting layer, a second-type semiconductor layer, a first electrode, a second electrode, a Bragg reflector structure, a conductive layer and insulation patterns. The first electrode and the second electrode are located on the same side of the Bragg reflector structure. The conductive layer is disposed between the Bragg reflector structure and the second-type semiconductor layer. The insulation patterns are disposed between the conductive layer and the second-type semiconductor layer. Each insulating layer has a first surface facing toward the second-type semiconductor layer, a second surface facing away from the second-type semiconductor layer, and an inclined surface. The inclined surface connects the first surface and the second surface and is inclined with respect to the first surface and the second surface.
    Type: Grant
    Filed: May 16, 2018
    Date of Patent: October 22, 2019
    Assignee: Genesis Photonics Inc.
    Inventors: Yi-Ru Huang, Tung-Lin Chuang, Yan-Ting Lan, Sheng-Tsung Hsu, Chih-Ming Shen, Jing-En Huang, Teng-Hsien Lai, Hung-Chuan Mai, Kuan-Chieh Huang, Shao-Ying Ting, Cheng-Pin Chen, Wei-Chen Chien, Chih-Chin Cheng, Chih-Hung Tseng
  • Publication number: 20190214374
    Abstract: A light emitting component includes an epitaxial structure, an adhesive layer, a first reflective layer, a second reflective layer, a block layer, a first electrode and a second electrode. The epitaxial structure includes a substrate, a first semiconductor layer, a light emitting layer and a second semiconductor layer. The adhesive layer is disposed on the second semiconductor layer of the epitaxial structure. The first reflective layer is disposed on the adhesive layer. The second reflective layer is disposed on the first reflective layer and extended onto the adhesive layer. A projection area of the second reflective layer is larger than a projection area of the first reflective layer. The block layer is disposed on the second reflective layer. The first electrode is electrically connected to the first semiconductor layer. The second electrode is electrically connected to the second semiconductor layer.
    Type: Application
    Filed: March 13, 2019
    Publication date: July 11, 2019
    Applicant: Genesis Photonics Inc.
    Inventors: Yi-Ru Huang, Tung-Lin Chuang, Chih-Ming Shen, Sheng-Tsung Hsu, Kuan-Chieh Huang, Jing-En Huang
  • Publication number: 20180337310
    Abstract: A light emitting diode including a first-type semiconductor layer, an emitting layer, a second-type semiconductor layer, a first electrode, a second electrode, and a Bragg reflector structure. The emitting layer is configured to emit a light beam and is located between the first-type semiconductor layer and the second-type semiconductor layer. The light beam has a peak wavelength in a light emitting wavelength range. The first-type semiconductor layer, the emitting layer, and the second-type semiconductor layer are located on a same side of the Bragg reflector structure. A reflectance of the Bragg reflector structure is greater than or equal to 95% in a reflective wavelength range at least covering 0.8X nm to 1.8X nm, and X is the peak wavelength of the light emitting wavelength range.
    Type: Application
    Filed: July 30, 2018
    Publication date: November 22, 2018
    Applicant: Genesis Photonics Inc.
    Inventors: Yi-Ru Huang, Tung-Lin Chuang, Yan-Ting Lan, Sheng-Tsung Hsu, Chih-Ming Shen, Jing-En Huang, Teng-Hsien Lai, Hung-Chuan Mai, Kuan-Chieh Huang, Shao-Ying Ting
  • Publication number: 20180261727
    Abstract: The invention provides an LED including a first-type semiconductor layer, an emitting layer, a second-type semiconductor layer, a first electrode, a second electrode, a Bragg reflector structure, a conductive layer and insulation patterns. The first electrode and the second electrode are located on the same side of the Bragg reflector structure. The conductive layer is disposed between the Bragg reflector structure and the second-type semiconductor layer. The insulation patterns are disposed between the conductive layer and the second-type semiconductor layer. Each insulating layer has a first surface facing toward the second-type semiconductor layer, a second surface facing away from the second-type semiconductor layer, and an inclined surface. The inclined surface connects the first surface and the second surface and is inclined with respect to the first surface and the second surface.
    Type: Application
    Filed: May 16, 2018
    Publication date: September 13, 2018
    Applicant: Genesis Photonics Inc.
    Inventors: Yi-Ru Huang, Tung-Lin Chuang, Yan-Ting Lan, Sheng-Tsung Hsu, Chih-Ming Shen, Jing-En Huang, Teng-Hsien Lai, Hung-Chuan Mai, Kuan-Chieh Huang, Shao-Ying Ting, Cheng-Pin Chen, Wei-Chen Chien, Chih-Chin Cheng, Chih-Hung Tseng
  • Publication number: 20180261729
    Abstract: Provided is a light emitting diode (LED) mounted on a carrier substrate and including a semiconductor epitaxial structure and at least one electrode pad structure. The semiconductor epitaxial structure is electrically connected to the carrier substrate. The electrode pad structure includes a eutectic layer, a barrier layer and a ductility layer. The eutectic layer is adapted for eutectic bonding to the carrier substrate. The barrier layer is between the eutectic layer and the semiconductor epitaxial structure. The barrier layer blocks the diffusion of the material of the eutectic layer in the eutectic bonding process. The ductility layer is between the eutectic layer and the semiconductor epitaxial structure. The ductility layer reduces the stress on the LED produced by thermal expansion and contraction of the substrate during the eutectic bonding process, so as to prevent the electrode pad structure from cracking, and maintain the quality of the LED.
    Type: Application
    Filed: May 9, 2018
    Publication date: September 13, 2018
    Applicant: Genesis Photonics Inc.
    Inventors: Yi-Ru Huang, Tung-Lin Chuang, Chih-Ming Shen, Sheng-Tsung Hsu, Kuan-Chieh Huang, Jing-En Huang, Shao-Ying Ting
  • Patent number: 10038121
    Abstract: A light emitting diode including a first-type semiconductor layer, an emitting layer, a second-type semiconductor layer, a first electrode, a second electrode, and a Bragg reflector structure. The emitting layer is configured to emit a light beam and is located between the first-type semiconductor layer and the second-type semiconductor layer. The light beam has a peak wavelength in a light emitting wavelength range. The first-type semiconductor layer, the emitting layer, and the second-type semiconductor layer are located on a same side of the Bragg reflector structure. A reflectance of the Bragg reflector structure is greater than or equal to 95% in a reflective wavelength range at least covering 0.8X nm to 1.8X nm, and X is the peak wavelength of the light emitting wavelength range.
    Type: Grant
    Filed: February 17, 2016
    Date of Patent: July 31, 2018
    Assignee: Genesis Photonics Inc.
    Inventors: Yi-Ru Huang, Tung-Lin Chuang, Yan-Ting Lan, Sheng-Tsung Hsu, Chih-Ming Shen, Jing-En Huang, Teng-Hsien Lai, Hung-Chuan Mai, Kuan-Chieh Huang, Shao-Ying Ting
  • Publication number: 20180130926
    Abstract: An LED includes a first-type semiconductor layer, a light emitting layer, a second-type semiconductor layer, a first metal layer, a first current conducting layer, a first bonding layer, and a second current conducting layer. The light emitting layer is located between the first-type semiconductor layer and the second-type semiconductor layer. The first metal layer is located on the first-type semiconductor layer and electrically connected to the first-type semiconductor layer. The first metal layer is located between the first current conducting layer and the first-type semiconductor layer. The first current conducting layer is located between the first bonding layer and the first metal layer. The first bonding layer is electrically connected to the first-type semiconductor layer via the first current conducting layer and the first metal layer. The first bonding layer has through holes overlapping with the first metal layer.
    Type: Application
    Filed: October 6, 2017
    Publication date: May 10, 2018
    Applicant: Genesis Photonics Inc.
    Inventors: Yi-Ru Huang, Sheng-Tsung Hsu, Yu-Chen Kuo, Chih-Ming Shen, Tung-Lin Chuang, Tsung-Syun Huang, Jing-En Huang
  • Publication number: 20180019232
    Abstract: A light emitting component includes an epitaxial structure, an adhesive layer, a first reflective layer, a second reflective layer, a block layer, a first electrode and a second electrode. The epitaxial structure includes a substrate, a first semiconductor layer, a light emitting layer and a second semiconductor layer. The adhesive layer is disposed on the second semiconductor layer of the epitaxial structure. The first reflective layer is disposed on the adhesive layer. The second reflective layer is disposed on the first reflective layer and extended onto the adhesive layer. A projection area of the second reflective layer is larger than a projection area of the first reflective layer. The block layer is disposed on the second reflective layer. The first electrode is electrically connected to the first semiconductor layer. The second electrode is electrically connected to the second semiconductor layer.
    Type: Application
    Filed: September 25, 2017
    Publication date: January 18, 2018
    Applicant: Genesis Photonics Inc.
    Inventors: Yi-Ru Huang, Tung-Lin Chuang, Chih-Ming Shen, Sheng-Tsung Hsu, Kuan-Chieh Huang, Jing-En Huang
  • Publication number: 20170309787
    Abstract: A light emitting diode (LED) having distributed Bragg reflector (DBR) and a manufacturing method thereof are provided. The distributed Bragg reflector is used as a reflective element for reflecting the light generated by the light emitting layer to an ideal direction of light output. The distributed Bragg reflector has a plurality of through holes, such that the metal layer and the transparent conductive layer disposed on two sides of the distributed Bragg reflector may contact each other to conduct the current. Due to the distribution properties of the through holes, the current may be more uniformly diffused, and the light may be more uniformly emitted from the light emitting layer.
    Type: Application
    Filed: July 10, 2017
    Publication date: October 26, 2017
    Inventors: Yi-Ru Huang, Kuan-Chieh Huang, Chih-Ming Shen, Tung-Lin Chuang, Hung-Chuan Mai, Jing-En Huang, Shao-Ying Ting