Patents by Inventor Tuong K. Truong

Tuong K. Truong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10175087
    Abstract: An airplane fuel level optical sensor using one side-emitting plastic optical fiber (SPOF) and two fluorescent plastic optical fibers (FPOFs) to detect the airplane fuel level without using any electrically conductive component or element placed inside the fuel tank. This dual-FPOF sensor is capable of achieving high resolution and high accuracy with a one-time calibration in the actual airplane's fuel tank environment. One embodiment of the dual-FPOF sensor uses one SPOF and two FPOFs to detect fuel level change based on the optical signal output from the two FPOFs. The sensor design uses large-diameter (core and cladding), lightweight, low-cost and high-durability plastic optical fiber, which is very desirable for airplane installation.
    Type: Grant
    Filed: February 9, 2017
    Date of Patent: January 8, 2019
    Assignee: The Boeing Company
    Inventors: Eric Y. Chan, Dennis G. Koshinz, Tuong K. Truong
  • Patent number: 10129143
    Abstract: Provided are mechanisms for improving bandwidth for non-essential data on deterministic aircraft data networks (ADNs) such as ARINC 664 networks. A switch such as an ARINC 664 switch maintains rate constrains on one or more priority levels of traffic while releasing rate constraints on low priority traffic. Low priority traffic can be received at an ARINC 664 switch at rates allowed by an Ethernet physical layer. However, low priority, non-rate constrained traffic is transmitted only when there are no other scheduled messages to send. Low priority traffic can consume all available bandwidth whenever there is slack time. A switch can further be separated into zones including a standard rate constrained zone as well as a rate unconstrained zone. Internal or external cross-links can be provided between the zones for any data that needs to be transferred between zones.
    Type: Grant
    Filed: October 25, 2016
    Date of Patent: November 13, 2018
    Assignee: The Boeing Company
    Inventors: Sean M. Ramey, Timothy E. Jackson, Arnold W. Nordsieck, Tuong K. Truong
  • Publication number: 20180299318
    Abstract: Systems and methods that use a passive differential optical sensor to measure the level of liquid in a reservoir (e.g., a fuel tank or other storage container). More specifically, the passive differential optical liquid level sensor solves the problem of common-mode intensity variations by employing three optical fibers that will be disposed vertically in the reservoir. The system comprises a side-emitting optical fiber having one end optically coupled to an optical source, a side-receiving optical fiber optically coupled to a first optical detector, and a total internal reflection optical fiber having one end optically coupled to the other end of the side-emitting optical fiber and another end optically coupled to a second optical detector. A computer or processor is configured to perform differential processing of the detected light and then determine the liquid level based on the differential processing results.
    Type: Application
    Filed: April 17, 2017
    Publication date: October 18, 2018
    Applicant: The Boeing Company
    Inventors: Tuong K. Truong, Dennis G. Koshinz, Eric Y. Chan, Kim Quan Anh Nguyen
  • Publication number: 20180302165
    Abstract: A controller area network (CAN) comprising a plurality of CAN nodes that communicate via a CAN bus that comprises a fiber optical network. The fiber optical network uses a single fiber and a single wavelength for transmit and receive, and comprises a passive reflective optical star. The reflective optical star comprises an optical mixing rod having a mirror at one end. The other end of the reflective optical star is optically coupled to the transmitters and receivers of a plurality of optical-electrical media converters by way of respective high-isolation optical Y-couplers. Each CAN node produces electrical signals (in accordance with the CAN message-based protocol) which are converted into optical pulses that are broadcast to the fiber optical network. Those optical pulses are then reflected back to all CAN nodes by the reflective optical star.
    Type: Application
    Filed: April 18, 2017
    Publication date: October 18, 2018
    Applicant: The Boeing Company
    Inventors: Tuong K. Truong, Dennis G. Koshinz, Eric Y. Chan, Kim Quan Anh Nguyen, Sean M. Ramey, Timothy E. Jackson, Barkhung Henry Pang
  • Publication number: 20180299317
    Abstract: Systems and methods that use a differential spectral liquid level sensor to measure the level of liquid in a reservoir (e.g., a fuel tank or other storage container). The use of a differential spectral liquid level sensor solves the problem of common-mode intensity variations (i.e., intensity variations not due to the level of the liquid) by having two different wavelengths propagate through the same optical path but have different spectral attenuations in the liquid. By determining the ratio of the received optical powers, common-mode intensity variations can be neutralized, thereby enhancing the accuracy of the received power reading and the resulting liquid level indication.
    Type: Application
    Filed: April 17, 2017
    Publication date: October 18, 2018
    Applicant: The Boeing Company
    Inventors: Tuong K. Truong, Eric Y. Chan, Dennis G. Koshinz, Kim Quan Anh Nguyen, Eric J. Harvey
  • Publication number: 20180224317
    Abstract: An airplane fuel level optical sensor using one side-emitting plastic optical fiber (SPOF) and two fluorescent plastic optical fibers (FPOFs) to detect the airplane fuel level without using any electrically conductive component or element placed inside the fuel tank. This dual-FPOF sensor is capable of achieving high resolution and high accuracy with a one-time calibration in the actual airplane's fuel tank environment. One embodiment of the dual-FPOF sensor uses one SPOF and two FPOFs to detect fuel level change based on the optical signal output from the two FPOFs. The sensor design uses large-diameter (core and cladding), lightweight, low-cost and high-durability plastic optical fiber, which is very desirable for airplane installation.
    Type: Application
    Filed: February 9, 2017
    Publication date: August 9, 2018
    Applicant: The Boeing Company
    Inventors: Eric Y. Chan, Dennis G. Koshinz, Tuong K. Truong
  • Patent number: 10012793
    Abstract: An optical network having at least one star coupler comprising transmit and receive optical mixers which are respectively optically coupled to transmitters and receivers of a plurality of optical-electrical media converters. Each optical-electrical media converter comprises a respective receiver optically coupled to the receive optical mixer by way of plastic optical fibers and a respective transmitter optically coupled to the transmit optical mixer by way of plastic optical fibers. The output plastic optical fibers attached to an output face of the receive optical mixer have a diameter less than the diameter of the input plastic optical fibers attached to an input face of the receive optical mixer.
    Type: Grant
    Filed: July 7, 2017
    Date of Patent: July 3, 2018
    Assignee: The Boeing Company
    Inventors: Eric Y. Chan, Dennis G. Koshinz, Tuong K. Truong, Henry B. Pang
  • Publication number: 20180115484
    Abstract: Provided are mechanisms for improving bandwidth for non-essential data on deterministic aircraft data networks (ADNs) such as ARINC 664 networks. A switch such as an ARINC 664 switch maintains rate constrains on one or more priority levels of traffic while releasing rate constraints on low priority traffic. Low priority traffic can be received at an ARINC 664 switch at rates allowed by an Ethernet physical layer. However, low priority, non-rate constrained traffic is transmitted only when there are no other scheduled messages to send. Low priority traffic can consume all available bandwidth whenever there is slack time. A switch can further be separated into zones including a standard rate constrained zone as well as a rate unconstrained zone. Internal or external cross-links can be provided between the zones for any data that needs to be transferred between zones.
    Type: Application
    Filed: October 25, 2016
    Publication date: April 26, 2018
    Applicant: The Boeing Company
    Inventors: Sean M. Ramey, Timothy E. Jackson, Arnold W. Nordsieck, Tuong K. Truong
  • Publication number: 20170371103
    Abstract: An optical network having at least one star coupler comprising transmit and receive optical mixers which are respectively optically coupled to transmitters and receivers of a plurality of optical-electrical media converters. Each optical-electrical media converter comprises a respective receiver optically coupled to the receive optical mixer by way of plastic optical fibers and a respective transmitter optically coupled to the transmit optical mixer by way of plastic optical fibers. The output plastic optical fibers attached to an output face of the receive optical mixer have a diameter less than the diameter of the input plastic optical fibers attached to an input face of the receive optical mixer.
    Type: Application
    Filed: July 7, 2017
    Publication date: December 28, 2017
    Applicant: The Boeing Company
    Inventors: Eric Y. Chan, Dennis G. Koshinz, Tuong K. Truong, Henry B. Pang
  • Patent number: 9851518
    Abstract: Systems, methods, and apparatus for an optical sub-assembly (OSA) are disclosed. In one or more embodiments, the disclosed apparatus involves a package body, and a lock nut, where a first end of the lock nut inserted into a first cavity of the package body. The apparatus further involves a transistor outline (TO) can, where a first end of the TO can is inserted into a second cavity of the package body. Also, the apparatus involves an optical fiber, where a portion of the jacket from an end of the optical fiber is stripped off, thereby exposing bare optical fiber at the end of the optical fiber. The end of the optical fiber is inserted into a second end of the lock nut such that the bare optical fiber passes into the package body and at least a portion of the bare optical fiber is inserted into the TO can cavity.
    Type: Grant
    Filed: March 4, 2016
    Date of Patent: December 26, 2017
    Assignee: The Boeing Company
    Inventors: Eric Y. Chan, Tuong K. Truong, Dennis G. Koshinz, Henry B. Pang
  • Patent number: 9791644
    Abstract: Systems, methods, and apparatus for a data bus-in-a-box (BiB) are disclosed. The system involves an electrical box, and at least one optical connector located on the box. The system further involves at least one mother board housed inside of the box, and comprising a transmit side comprising at least one transmit optical media converter (OMC) tile, and a receive side comprising at least one receive OMC tile. Also, the system involves first receive optical fibers that are each connected from at least one receive OMC tile to a receive coupler; and a second receive optical fiber connected from the receive coupler to one of the optical connectors. Further, the system involves first transmit optical fibers that are each connected from at least one transmit OMC tile to a transmit coupler; and a second transmit optical fiber connected from the transmit coupler to at least one of the optical connectors.
    Type: Grant
    Filed: November 5, 2014
    Date of Patent: October 17, 2017
    Assignee: The Boeing Company
    Inventors: Eric Y. Chan, Tuong K. Truong, Dennis G. Koshinz, Henry B. Pang, William E. Lawrence, Clete M. Boldrin
  • Patent number: 9787399
    Abstract: An inline optoelectronic converter configured to convert electrical signals to optical signals and to convert optical signals to electrical signals. The converter is external to the avionic computer and connected to the avionic computer at a location spaced apart from the avionic computer. The converter is configured to be integrated into an existing wiring bundle of the avionic computer. Also disclosed is a method of retrofitting an avionic computer by connecting an optoelectronic converter to the computer. The method comprises connecting the converter to an existing wiring bundle of the avionic computer at a location spaced apart from the avionic computer.
    Type: Grant
    Filed: May 14, 2015
    Date of Patent: October 10, 2017
    Assignee: THE BOEING COMPANY
    Inventors: Tuong K. Truong, Michael K. La
  • Patent number: 9778419
    Abstract: An optical network having at least one star coupler comprising transmit and receive optical mixers which are respectively optically coupled to transmitters and receivers of a plurality of optical-electrical media converters. Each optical-electrical media converter comprises a respective receiver optically coupled to the receive optical mixer by way of plastic optical fibers and a respective transmitter optically coupled to the transmit optical mixer by way of plastic optical fibers. The output plastic optical fibers attached to an output face of the receive optical mixer have a diameter less than the diameter of the input plastic optical fibers attached to an input face of the receive optical mixer.
    Type: Grant
    Filed: June 23, 2016
    Date of Patent: October 3, 2017
    Assignee: The Boeing Company
    Inventors: Eric Y. Chan, Dennis G. Koshinz, Tuong K. Truong, Henry B. Pang
  • Patent number: 9645004
    Abstract: Systems and methods that use an optical impedance sensor that eliminates electricity for measuring fuel quantity in fuel tanks. The optical impedance sensor comprises two optical fibers spaced apart inside a meniscus tube, one to transmit light along its length and the other to receive light along its length. The meniscus tube minimizes the sloshing of fuel level. The fuel level in the tank modulates the optical impedance between the two optical fibers, resulting in changes in the total light received by an optical detector. Depending on fuel tank height, the optical impedance sensor may comprise different embodiments in which the detection apparatus shapes the light to be unidirectional (emitted and collected only on one side of the fiber) or omnidirectional (all directions).
    Type: Grant
    Filed: November 19, 2014
    Date of Patent: May 9, 2017
    Assignee: The Boeing Company
    Inventors: Tuong K. Truong, Dennis G. Koshinz, Eric Y. Chan, Todd C. Thomas, J. Everett Groat, Sigvard J. Wahlin, John L. Vento, Sham S. Hariram, Richard J. Nesting
  • Publication number: 20160187598
    Abstract: Systems, methods, and apparatus for an optical sub-assembly (OSA) are disclosed. In one or more embodiments, the disclosed apparatus involves a package body, and a lock nut, where a first end of the lock nut inserted into a first cavity of the package body. The apparatus further involves a transistor outline (TO) can, where a first end of the TO can is inserted into a second cavity of the package body. Also, the apparatus involves an optical fiber, where a portion of the jacket from an end of the optical fiber is stripped off, thereby exposing bare optical fiber at the end of the optical fiber. The end of the optical fiber is inserted into a second end of the lock nut such that the bare optical fiber passes into the package body and at least a portion of the bare optical fiber is inserted into the TO can cavity.
    Type: Application
    Filed: March 4, 2016
    Publication date: June 30, 2016
    Applicant: THE BOEING COMPANY
    Inventors: Eric Y. Chan, Tuong K. Truong, Dennis G. Koshinz, Henry B. Pang
  • Publication number: 20160138958
    Abstract: Systems and methods that use an optical impedance sensor that eliminates electricity for measuring fuel quantity in fuel tanks. The optical impedance sensor comprises two optical fibers spaced apart inside a meniscus tube, one to transmit light along its length and the other to receive light along its length. The meniscus tube minimizes the sloshing of fuel level. The fuel level in the tank modulates the optical impedance between the two optical fibers, resulting in changes in the total light received by an optical detector. Depending on fuel tank height, the optical impedance sensor may comprise different embodiments in which the detection apparatus shapes the light to be unidirectional (emitted and collected only on one side of the fiber) or omnidirectional (all directions).
    Type: Application
    Filed: November 19, 2014
    Publication date: May 19, 2016
    Applicant: THE BOEING COMPANY
    Inventors: Tuong K. Truong, Dennis G. Koshinz, Eric Y. Chan, Todd C. Thomas, J. Everett Groat, Sigvard J. Wahlin, John L. Vento, Sham S. Hariram, Richard J. Nesting
  • Publication number: 20160124169
    Abstract: Systems, methods, and apparatus for a data bus-in-a-box (BiB) are disclosed. The system involves an electrical box, and at least one optical connector located on the box. The system further involves at least one mother board housed inside of the box, and comprising a transmit side comprising at least one transmit optical media converter (OMC) tile, and a receive side comprising at least one receive OMC tile. Also, the system involves first receive optical fibers that are each connected from at least one receive OMC tile to a receive coupler; and a second receive optical fiber connected from the receive coupler to one of the optical connectors. Further, the system involves first transmit optical fibers that are each connected from at least one transmit OMC tile to a transmit coupler; and a second transmit optical fiber connected from the transmit coupler to at least one of the optical connectors.
    Type: Application
    Filed: November 5, 2014
    Publication date: May 5, 2016
    Inventors: Eric Y. Chan, Tuong K. Truong, Dennis G. Koshinz, Henry B. Pang, William E. Lawrence, Clete M. Boldrin
  • Patent number: 9297970
    Abstract: Systems, methods, and apparatus for an optical sub-assembly (OSA) are disclosed. In one or more embodiments, the disclosed apparatus involves a package body, and a lock nut, where a first end of the lock nut inserted into a first cavity of the package body. The apparatus further involves a transistor outline (TO) can, where a first end of the TO can is inserted into a second cavity of the package body. Also, the apparatus involves an optical fiber, where a portion of the jacket from an end of the optical fiber is stripped off, thereby exposing bare optical fiber at the end of the optical fiber. The end of the optical fiber is inserted into a second end of the lock nut such that the bare optical fiber passes into the package body and at least a portion of the bare optical fiber is inserted into the TO can cavity.
    Type: Grant
    Filed: November 5, 2014
    Date of Patent: March 29, 2016
    Assignee: THE BOEING COMPANY
    Inventors: Eric Y. Chan, Tuong K. Truong, Dennis G. Koshinz, Henry B. Pang
  • Publication number: 20150244462
    Abstract: An inline optoelectronic converter configured to convert electrical signals to optical signals and to convert optical signals to electrical signals. The converter is external to the avionic computer and connected to the avionic computer at a location spaced apart from the avionic computer. The converter is configured to be integrated into an existing wiring bundle of the avionic computer. Also disclosed is a method of retrofitting an avionic computer by connecting an optoelectronic converter to the computer. The method comprises connecting the converter to an existing wiring bundle of the avionic computer at a location spaced apart from the avionic computer.
    Type: Application
    Filed: May 14, 2015
    Publication date: August 27, 2015
    Inventors: Tuong K. Truong, Michael K. La
  • Patent number: 9077451
    Abstract: An inline optoelectronic converter configured to convert electrical signals to optical signals and to convert optical signals to electrical signals. The converter is external to the avionic computer and connected to the avionic computer at a location spaced apart from the avionic computer. The converter is configured to be integrated into an existing wiring bundle of the avionic computer. Also disclosed is a method of retrofitting an avionic computer by connecting an optoelectronic converter to the computer. The method comprises connecting the converter to an existing wiring bundle of the avionic computer at a location spaced apart from the avionic computer.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: July 7, 2015
    Assignee: THE BOEING COMPANY
    Inventors: Tuong K. Truong, Michael K. La