Patents by Inventor Turgut Sahin

Turgut Sahin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070296980
    Abstract: Methods and apparatus for controlling the critical dimensions and monitoring the phase shift angles of photomasks. Critical dimensions measurement data before wafer processing and after wafer processing are collected by an integrated metrology tool to adjust the process recipe, to determine if the critical dimensions are in specification and to determine if additional etching is required. Phase shift angle and uniformity across substrate measurement after wafer processing are collected by an integrated metrology tool to determine if the phase shift angle and its uniformity are in specification. The real time process recipe adjustment and determination if additional etching is requires allow tightening of the process control. The phase shift angle and uniformity monitoring allows in-line screening of phase shift photomasks.
    Type: Application
    Filed: July 31, 2007
    Publication date: December 27, 2007
    Inventors: ALFRED MAK, Yung-Hee Lee, Cynthia Brooks, Melisa Buie, Turgut Sahin, Jian Ding
  • Patent number: 7294205
    Abstract: A layer of reduced stress is formed on a substrate using an HDP-CVD system by delaying or interrupting the application of capacitively coupled RF energy. The layer is formed by introducing a process gas into the HDP system chamber and forming a plasma from the process gas by the application of RF power to an inductive coil. After a selected period, a second layer of the film is deposited by maintaining the inductively-coupled plasma and biasing the plasma toward the substrate to enhance the sputtering effect of the plasma. In a preferred embodiment, the deposited film is a silicon oxide film, and biasing is performed by application of capacitively coupled RF power from RF generators to a ceiling plate electrode and wafer support electrode.
    Type: Grant
    Filed: July 27, 1999
    Date of Patent: November 13, 2007
    Assignee: Applied Materials, Inc.
    Inventors: K. V. Ravi, Kent Rossman, Turgut Sahin, Pravin Narwankar
  • Patent number: 7250309
    Abstract: Methods and apparatus for controlling the critical dimensions and monitoring the phase shift angles of photomasks. Critical dimensions measurement data before wafer processing and after wafer processing are collected by an integrated metrology tool to adjust the process recipe, to determine if the critical dimensions are in specification and to determine if additional etching is required. Phase shift angle and uniformity across substrate measurement after wafer processing are collected by an integrated metrology tool to determine if the phase shift angle and its uniformity are in specification. The real time process recipe adjustment and determination if additional etching is requires allow tightening of the process control. The phase shift angle and uniformity monitoring allows in-line screening of phase shift photomasks.
    Type: Grant
    Filed: January 9, 2004
    Date of Patent: July 31, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Alfred W. Mak, Yung-Hee Yvette Lee, Cynthia B. Brooks, Melisa J. Buie, Turgut Sahin, Jian Ding
  • Publication number: 20050153564
    Abstract: Methods and apparatus for controlling the critical dimensions and monitoring the phase shift angles of photomasks. Critical dimensions measurement data before wafer processing and after wafer processing are collected by an integrated metrology tool to adjust the process recipe, to determine if the critical dimensions are in specification and to determine if additional etching is required. Phase shift angle and uniformity across substrate measurement after wafer processing are collected by an integrated metrology tool to determine if the phase shift angle and its uniformity are in specification. The real time process recipe adjustment and determination if additional etching is requires allow tightening of the process control. The phase shift angle and uniformity monitoring allows in-line screening of phase shift photomasks.
    Type: Application
    Filed: January 9, 2004
    Publication date: July 14, 2005
    Inventors: Alfred Mak, Yung-Hee Lee, Cynthia Brooks, Melisa Buie, Turgut Sahin, Jian Ding
  • Publication number: 20050133166
    Abstract: The present invention generally provides an improved pedestal for supporting a substrate. The pedestal has greatest application during a plasma etching process, such as for a quartz photomask, or “reticle.” The pedestal defines a body, and a substrate support base along an upper surface of the body. The substrate support base has an outer edge, and an intermediate substrate support ridge for receiving and supporting the substrate. At least a portion of the substrate support base outside of the intermediate substrate support ridge is fabricated from a dielectric material. The purpose is to couple greater RF power through the reticle in order to enhance the plasma etching process.
    Type: Application
    Filed: February 18, 2004
    Publication date: June 23, 2005
    Inventors: Peter Satitpunwaycha, Khiem Nguyen, Alfred Mak, Kenneth Collins, Turgut Sahin
  • Publication number: 20030220708
    Abstract: A method is provided that includes (1) receiving information about a substrate etched within an etch subsystem from an integrated inspection system of the etch subsystem; (2) determining a deposition process to perform within a deposition subsystem based at least in part on the information received from the inspection system of the etch subsystem; (3) directing the deposition subsystem to deposit an insulating material on the substrate based on the deposition process; (4) receiving information about the insulating material deposited on the substrate from an integrated inspection system of the deposition subsystem; (5) determining a planarization process to perform within a planarization subsystem based at least in part on the information received from the inspection system of the deposition subsystem; and (6) directing the planarization subsystem to planarize the substrate based on the planarization process. Other methods, systems, apparatus, data structures and computer program products are also provided.
    Type: Application
    Filed: November 27, 2002
    Publication date: November 27, 2003
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Turgut Sahin, Michael C. Smayling
  • Patent number: 6624064
    Abstract: The present invention provides a method of depositing an amorphous fluorocarbon film using a high bias power applied to the substrate on which the material is deposited. The invention contemplates flowing a carbon precursor at rate and at a power level so that equal same molar ratios of a carbon source is available to bind the fragmented fluorine in the film thereby improving film quality while also enabling improved gap fill performance. The invention further provides for improved adhesion of the amorphous fluorocarbon film to metal surfaces by first depositing a metal or TiN adhesion layer on the metal surfaces and then stuffing the surface of the deposited adhesion layer with nitrogen. Adhesion is further improved by coating the chamber walls with silicon nitride or silicon oxynitride.
    Type: Grant
    Filed: October 10, 1997
    Date of Patent: September 23, 2003
    Assignee: Applied Materials, Inc.
    Inventors: Turgut Sahin, Yaxin Wang, Ming Xi
  • Publication number: 20030157812
    Abstract: A method and apparatus for modifying the profile of narrow, high-aspect-ratio gaps on a semiconductor substrate are used to fill the gaps in a void-free manner. Differential heating characteristics of a substrate in a high-density plasma chemical vapor deposition (HDP-CVD) system helps to prevent the gaps from being pinched off before they are filled. The power distribution between coils forming the plasma varies the angular dependence of the sputter etch component of the plasma, and thus may be used to modify the gap profile, independently or in conjunction with differential heating. A heat source may be applied to the backside of a substrate during the concurrent deposition/etch process to further enhance the profile modification characteristics of differential heating.
    Type: Application
    Filed: February 25, 2003
    Publication date: August 21, 2003
    Applicant: Applied Materials, Inc.
    Inventors: Pravin Narwankar, Sameer Desai, Walter Zygmunt, Turgut Sahin, Laxman Murugesh
  • Patent number: 6579811
    Abstract: A method and apparatus for modifying the profile of narrow, high-aspect-ratio gaps on a semiconductor substrate are used to fill the gaps in a void-free manner. Differential heating characteristics of a substrate in a high-density plasma chemical vapor deposition (HDP-CVD) system helps to prevent the gaps from being pinched off before they are filled. The power distribution between coils forming the plasma varies the angular dependence of the sputter etch component of the plasma, and thus may be used to modify the gap profile, independently or in conjunction with differential heating. A heat source may be applied to the backside of a substrate during the concurrent deposition/etch process to further enhance the profile modification characteristics of differential heating.
    Type: Grant
    Filed: December 20, 2000
    Date of Patent: June 17, 2003
    Assignee: Applied Materials Inc.
    Inventors: Pravin Narwankar, Sameer Desai, Walter Zygmunt, Turgut Sahin, Laxman Murugesh
  • Patent number: 6518203
    Abstract: The present invention describes a method of processing a substrate. According to the present invention a dielectric layer is formed on the substrate. The dielectric layer is then exposed in a first chamber to activated nitrogen atoms formed in a second chamber to form a nitrogen passivated dielectric layer. A metal nitride film is then formed on the nitrogen passivated dielectric layer.
    Type: Grant
    Filed: October 18, 2001
    Date of Patent: February 11, 2003
    Assignee: Applied Materials, Inc.
    Inventors: Pravin Narwankar, Turgut Sahin
  • Publication number: 20020192370
    Abstract: An integrated deposition system is provided which is capable of vaporizing low vapor pressure liquid precursors and delivering this vapor into a processing region for use in the fabrication of advanced integrated circuits. The integrated deposition system is made up of a heated exhaust system, a remote plasma generator, a processing chamber and a liquid delivery system which together provide a commercially viable and production worthy system for depositing high capacity dielectric materials from low vapor pressure precursors, anneal those films while also providing commercially viable in-situ cleaning capability.
    Type: Application
    Filed: July 12, 2002
    Publication date: December 19, 2002
    Inventors: Craig R. Metzner, Turgut Sahin, Gregory F. Redinbo, Pravin K. Narwankar, Patricia M. Liu
  • Publication number: 20020168847
    Abstract: A method of providing a stable interface between a metallic layer and a dielectric layer in a semiconductor device is provided. The method includes generating a remote nitrogen containing plasma and flowing activated nitrogen species, from the remote site to the location of the metallic layer. The activated nitrogen species are flowed over at least the surface of the metallic layer, where they react with the metallic surface to form a metal nitride. The treated layer can be used to provide a stable bottom electrode in a capacitor stack formation.
    Type: Application
    Filed: May 9, 2001
    Publication date: November 14, 2002
    Applicant: Applied Materials, Inc.
    Inventors: Pravin Narwankar, Ravi Rajagopalan, Turgut Sahin
  • Patent number: 6465051
    Abstract: The invention is embodied in a method of cleaning a plasma reactor by creating a vacuum in the chamber while introducing an etchant gas into the chamber through the gas injection ports, and applying RF energy to a ceiling electrode in the chamber while not necessarily applying RF energy to the coil antenna, so as to strike a predominantly capacitively coupled plasma in the vacuum chamber. In another embodiment the method includes, whenever the reactor is to be operated in an inductive coupling mode, applying RF power to the reactors coil antenna while grounding the ceiling electrode, and whenever the reactor is to be operated in a capacitive coupling mode, applying RF power to the ceiling electrode, and whenever the reactor is to be cleaned, cleaning the reactor by applying RF power to the ceiling electrode and to the coil antenna while introducing an etchant gas into the vacuum chamber.
    Type: Grant
    Filed: November 18, 1996
    Date of Patent: October 15, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Turgut Sahin, Fred C. Redeker, Romuald Nowak, Shijian Li, Timothy Dyer, Derek R. Witty
  • Patent number: 6454860
    Abstract: An integrated deposition system is provided which is capable of vaporizing low vapor pressure liquid precursors and delivering this vapor into a processing region for use in the fabrication of advanced integrated circuits. The integrated deposition system is made up of a heated exhaust system, a remote plasma generator, a processing chamber and a liquid delivery system which together provide a commercially viable and production worthy system for depositing high capacity dielectric materials from low vapor pressure precursors, anneal those films while also providing commercially viable in-situ cleaning capability.
    Type: Grant
    Filed: October 27, 1998
    Date of Patent: September 24, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Craig R. Metzner, Turgut Sahin, Gregory F. Redinbo, Pravin K. Narwankar, Patricia M. Liu
  • Patent number: 6450116
    Abstract: An apparatus and method for exposing a substrate to plasma including a first reaction chamber adapted to generate a plasma comprising ions and radicals and a second reaction chamber coupled to the first reaction chamber and adapted to house a substrate at a sight in the second reaction chamber. The second reaction chamber is coupled to the first reaction chamber by an inlet member and radicals of the plasma flow through the inlet member into the second reaction chamber.
    Type: Grant
    Filed: November 12, 1999
    Date of Patent: September 17, 2002
    Assignee: Applied Materials, Inc.
    Inventors: David B. Noble, Ravi Jallepally, Nathan D'Astici, Gary Miner, Turgut Sahin, Guangcai Xing, Yashraj Bhatnagar
  • Publication number: 20020073925
    Abstract: An apparatus and method for exposing a substrate to plasma including a first reaction chamber adapted to generate a plasma comprising ions and radicals and a second reaction chamber coupled to the first reaction chamber and adapted to house a substrate at a sight in the second reaction chamber. The second reaction chamber is coupled to the first reaction chamber by an inlet member and radicals of the plasma flow through the inlet member into the second reaction chamber.
    Type: Application
    Filed: November 12, 1999
    Publication date: June 20, 2002
    Inventors: DAVID B. NOBLE, RAVI JALLEPALLY, NATHAN D'ASTICI, GARY MINER, TURGUT SAHIN, GUANGCAI XING, YASHRAJ BHATNAGAR
  • Patent number: 6387761
    Abstract: A method for improving the interface between a silicon nitride film and a silicon surface is described. According to the present invention a silicon nitride film is formed on a silicon surface of a substrate. While said substrate is heated the silicon nitride film is exposed to an ambient comprising hydrogen (H2). In a prefered embodiment of the present invention the ambient comprises H2 and N2.
    Type: Grant
    Filed: February 4, 2000
    Date of Patent: May 14, 2002
    Assignees: Applied Materials, Inc., Vanguard Semiconductor, Ltd.
    Inventors: Wong-Cheng Shih, Pravin K. Narwankar, Randall S. Urdahl, Turgut Sahin
  • Publication number: 20020055270
    Abstract: The present invention describes a method of processing a substrate. According to the present invention a dielectric layer is formed on the substrate. The dielectric layer is then exposed in a first chamber to activated nitrogen atoms formed in a second chamber to form a nitrogen passivated dielectric layer. A metal nitride film is then formed on the nitrogen passivated dielectric layer.
    Type: Application
    Filed: October 18, 2001
    Publication date: May 9, 2002
    Inventors: Pravin Narwankar, Turgut Sahin
  • Patent number: 6383954
    Abstract: A substrate processing system includes a housing defining a chamber for forming a film on the substrate surface of a substrate disposed within the chamber. The system includes a first plurality of nozzles that extend into the chamber for injecting a first chemical at a first distance from a periphery of the substrate surface, and a second plurality of nozzles that extend into the chamber for injecting a second chemical at a second distance from the periphery of the substrate surface. The second distance is substantially equal to or smaller than the first distance. In one embodiment, the first chemical contains a dielectric material and the second chemical contains dopant species which react with the first chemical to deposit a doped dielectric material on the substrate. Injecting the dopant species closer to the substrate surface than previously done ensures that the dopant species are distributed substantially uniformly over the substrate surface and the deposition of a stable doped dielectric layer.
    Type: Grant
    Filed: July 27, 1999
    Date of Patent: May 7, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Yaxin Wang, Diana Chan, Turgut Sahin, Tetsuya Ishikawa, Farhad Moghadam
  • Patent number: 6379466
    Abstract: The temperature controlled gas distribution plate of the present invention includes a liquid cooling passage, with inlet and outlet ports, that is formed within the gas distribution plate. In the preferred embodiment, the plate is formed with an upper passage cover and a lower base having a liquid passage channel formed within the side walls thereof. The cover and base are welded together to form a sealed liquid passage within the plate through which the liquid coolant flows.
    Type: Grant
    Filed: May 5, 1994
    Date of Patent: April 30, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Turgut Sahin, Salvador Umotoy, Avi Tepman, Ronald Lloyd Rose