Patents by Inventor Ty McNutt

Ty McNutt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230170306
    Abstract: A power module includes a power substrate, a number of power semiconductor die, and a number of connector pins. The power substrate includes a number of conductive traces. The power semiconductor die are mounted on the power substrate and electrically coupled to the conductive traces. The connector pins are each electrically coupled to a different one of the conductive traces and configured to be interconnected such that the power semiconductor die provide an active front-end and a switching power converter. By providing the power semiconductor die such that they can be interconnected to form an active front-end and a switching power converter in the same power module, the power module may provide a significantly more compact power converter system using both an active front-end and switching power converter.
    Type: Application
    Filed: January 31, 2023
    Publication date: June 1, 2023
    Inventors: Daniel John Martin, Brett Edward Sparkman, Ty McNutt, Paul Wheeler
  • Patent number: 11569174
    Abstract: A power module includes a power substrate, a number of power semiconductor die, and a number of connector pins. The power substrate includes a number of conductive traces. The power semiconductor die are mounted on the power substrate and electrically coupled to the conductive traces. The connector pins are each electrically coupled to a different one of the conductive traces and configured to be interconnected such that the power semiconductor die provide an active front-end and a switching power converter. By providing the power semiconductor die such that they can be interconnected to form an active front-end and a switching power converter in the same power module, the power module may provide a significantly more compact power converter system using both an active front-end and switching power converter.
    Type: Grant
    Filed: February 18, 2021
    Date of Patent: January 31, 2023
    Assignee: WOLFSPEED, INC.
    Inventors: Daniel John Martin, Brett Edward Sparkman, Ty McNutt, Paul Wheeler
  • Publication number: 20220262735
    Abstract: A power module includes a power substrate, a number of power semiconductor die, and a number of connector pins. The power substrate includes a number of conductive traces. The power semiconductor die are mounted on the power substrate and electrically coupled to the conductive traces. The connector pins are each electrically coupled to a different one of the conductive traces and configured to be interconnected such that the power semiconductor die provide an active front-end and a switching power converter. By providing the power semiconductor die such that they can be interconnected to form an active front-end and a switching power converter in the same power module, the power module may provide a significantly more compact power converter system using both an active front-end and switching power converter.
    Type: Application
    Filed: February 18, 2021
    Publication date: August 18, 2022
    Inventors: Daniel John Martin, Brett Edward Sparkman, Ty McNutt, Paul Wheeler
  • Patent number: 10784235
    Abstract: A power module includes a case, a first terminal, a second terminal, and a number of silicon carbide semiconductor die. The case has a footprint less than 30 cm2. The silicon carbide semiconductor die are inside the case and coupled between the first terminal and the second terminal. The power module and the silicon carbide semiconductor die are configured such that in a first operating state the silicon carbide semiconductor die are capable of continuously blocking voltages greater than 650V between the first terminal and the second terminal, and in a second operating state the silicon carbide semiconductor die are capable of continuously passing currents greater than 200 A between the first terminal and the second terminal.
    Type: Grant
    Filed: January 30, 2018
    Date of Patent: September 22, 2020
    Assignee: Cree Fayetteville, Inc.
    Inventors: Brice McPherson, Sayan Seal, Zachary Cole, Jennifer Stabach, Brandon Passmore, Ty McNutt, Alexander B. Lostetter
  • Publication number: 20190237439
    Abstract: A power module includes a case, a first terminal, a second terminal, and a number of silicon carbide semiconductor die. The case has a footprint less than 30 cm2. The silicon carbide semiconductor die are inside the case and coupled between the first terminal and the second terminal. The power module and the silicon carbide semiconductor die are configured such that in a first operating state the silicon carbide semiconductor die are capable of continuously blocking voltages greater than 650V between the first terminal and the second terminal, and in a second operating state the silicon carbide semiconductor die are capable of continuously passing currents greater than 200 A between the first terminal and the second terminal.
    Type: Application
    Filed: January 30, 2018
    Publication date: August 1, 2019
    Inventors: Brice McPherson, Sayan Seal, Zachary Cole, Jennifer Stabach, Brandon Passmore, Ty McNutt, Alexander B. Lostetter
  • Patent number: 9407251
    Abstract: A multichip power module directly connecting the busboard to a printed-circuit board that is attached to the power substrate enabling extremely low loop inductance for extreme environments such as high temperature operation. Wire bond interconnections are taught from the power die directly to the busboard further enabling enable low parasitic interconnections. Integration of on-board high frequency bus capacitors provide extremely low loop inductance. An extreme environment gate driver board allows close physical proximity of gate driver and power stage to reduce overall volume and reduce impedance in the control circuit. Parallel spring-loaded pin gate driver PCB connections allows a reliable and reworkable power module to gate driver interconnections.
    Type: Grant
    Filed: December 9, 2013
    Date of Patent: August 2, 2016
    Assignee: Cree Fayetteville, Inc.
    Inventors: Brandon Passmore, Zach Cole, Bret Whitaker, Adam Barkley, Ty McNutt, Alexander Lostetter
  • Patent number: 9095054
    Abstract: A four quadrant power module with lower substrate parallel power paths and upper substrate equidistant clock tree timing utilizing parallel leg construction in a captive fastener power module housing.
    Type: Grant
    Filed: October 15, 2013
    Date of Patent: July 28, 2015
    Assignee: Arkansas Power Electronics International, Inc.
    Inventors: Jack Bourne, Jared Hornberger, Alex Lostetter, Brice McPherson, Ty McNutt, Brad Reese, Marcelo Schupbach, Robert Shaw, Eric Cole, Leonard Schaper
  • Patent number: D909310
    Type: Grant
    Filed: September 17, 2018
    Date of Patent: February 2, 2021
    Assignee: Cree, Fayetteville, Inc.
    Inventors: Brice McPherson, Sayan Seal, Zachary Cole, Jennifer Stabach, Brandon Passmore, Ty McNutt, Alexander B. Lostetter
  • Patent number: D954668
    Type: Grant
    Filed: January 10, 2019
    Date of Patent: June 14, 2022
    Assignee: WOLFSPEED, INC.
    Inventors: Matthew Feurtado, Daniel Martin, Ty McNutt, Brice McPherson, Alexander Lostetter