Patents by Inventor Tyler Cote

Tyler Cote has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240024866
    Abstract: This disclosure describes single-use test cartridges, cell analyzer apparatus, and methods for automatically performing microscopic cell analysis tasks, such as counting and analyzing blood cells in biological samples. A small measured quantity of a biological sample, such as whole blood, is placed in a mixing bowl on the disposable test cartridge after being inserted into the cell analyzer. The analyzer also deposits a known amount of diluent/stain in the mixing bowl and mixes it with the blood. The analyzer takes a measured amount of the mixture and dispenses in a sample cup on the cartridge in fluid communication with an imaging chamber. The geometry of the imaging chamber is chosen to maintain the uniformity of the mixture, and to prevent cells from crowding or clumping as it is transferred into the imaging chamber by the analyzer. Images of all of the cellular components within the imaging chamber are counted and analyzed to obtain a complete blood count.
    Type: Application
    Filed: February 27, 2023
    Publication date: January 25, 2024
    Inventors: Ronald Jones, Adrian Gropper, Robert Hagopian, Charles Rogers, Thomas Vitella, Tyler Cote, Donald Barry, Dirk Osterloh, Chen Yi
  • Publication number: 20230294089
    Abstract: This disclosure describes single-use test cartridges, cell analyzer apparatus, and methods for automatically performing microscopic cell analysis tasks, such as counting blood cells in biological samples. A small unmeasured quantity of a biological sample such as whole blood is placed in the disposable test cartridge which is then inserted into the cell analyzer. The analyzer isolates a precise volume of the biological sample, mixes it with self-contained reagents and transfers the entire volume to an imaging chamber. The geometry of the imaging chamber is chosen to maintain the uniformity of the mixture, and to prevent cells from crowding or clumping, when it is transferred into the imaging chamber. Images of essentially all of the cellular components within the imaging chamber are analyzed to obtain counts per unit volume.
    Type: Application
    Filed: October 24, 2022
    Publication date: September 21, 2023
    Inventors: Ronald Jones, Adrian Gropper, Robert Hagopian, Charles Rogers, Thomas Vitella, Donald Barry, JR., Dirk Osterloh, Chen Yi, Tyler Cote
  • Publication number: 20230185070
    Abstract: Disclosed in one aspect is a method for performing a complete blood count (CBC) on a sample of whole blood by metering a predetermined amount of the whole blood and mixing it with a predetermined amount of diluent and stain and transferring a portion thereof to an imaging chamber of fixed dimensions and utilizing an automated microscope with digital camera and cell counting and recognition software to count every white blood cell and red blood corpuscle and platelet in the sample diluent/stain mixture to determine the number of red cells, white cells, and platelets per unit volume, and analyzing the white cells with cell recognition software to classify them.
    Type: Application
    Filed: October 24, 2022
    Publication date: June 15, 2023
    Inventors: Ronald Jones, Adrian Gropper, Robert Hagopian, Charles Rogers, Thomas Vitella, Donald Barry, JR., Dirk Osterloh, Chen Yi, Tyler Cote
  • Patent number: 11605825
    Abstract: A fuel reformer module (8005) for initiating catalytic partial oxidation (CPOX) to reform a hydrocarbon fuel oxidant mixture (2025, 3025) to output a syngas reformate (2027) to solid oxide fuel cell stack (2080, 5040). A solid non-porous ceramic catalyzing body (3030) includes a plurality of catalyst coated fuel passages (3085). A thermally conductive element (9005, 10005, 11005, 13005), with a coefficient of thermal conductivity of 50 W/m° K or greater is thermally conductively coupled with the catalyzing body. A first thermal sensor (8030) is thermally conductively coupled with the thermally conductive element. A second thermal sensor is thermally conductively coupled with a surface of the fuel cell stack. A control method independently modulates an oxidant input flow rate, based on first thermal sensor signal values, a hydrocarbon fuel input flow rate, based on second thermal sensor signal values.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: March 14, 2023
    Assignee: Upstart Power, Inc.
    Inventors: Nathan Palumbo, Siddhant Singhal, Matthew Otis, Tyler Cote, Richard Flathers, Paul Osenar
  • Patent number: 11590496
    Abstract: This disclosure describes single-use test cartridges, cell analyzer apparatus, and methods for automatically performing microscopic cell analysis tasks, such as counting and analyzing blood cells in biological samples. A small measured quantity of a biological sample, such as whole blood, is placed in a mixing bowl on the disposable test cartridge after being inserted into the cell analyzer. The analayzer also deposits a known amount of diluent/stain in the mixing bowl and mixes it with the blood. The analyzer takes a measured amount of the mixture and dispenses in a sample cup on the cartridge in fluid communication with an imaging chamber. The geometry of the imaging chamber is chosen to maintain the uniformity of the mixture, and to prevent cells from crowding or clumping as it is transferred into the imaging chamber by the analyzer. Images of all of the cellular components within the imaging chamber are counted and analyzed to obtain a complete blood count.
    Type: Grant
    Filed: February 27, 2020
    Date of Patent: February 28, 2023
    Assignee: Medica Corporation
    Inventors: Ronald Jones, Adrian Gropper, Robert Hagopian, Charles Rogers, Thomas Vitella, Tyler Cote, Donald Barry, Dirk Osterloh, Chen Yi
  • Patent number: 11478789
    Abstract: This disclosure describes single-use test cartridges, cell analyzer apparatus, and methods for automatically performing microscopic cell analysis tasks, such as counting blood cells in biological samples. A small unmeasured quantity of a biological sample such as whole blood is placed in the disposable test cartridge which is then inserted into the cell analyzer. The analyzer isolates a precise volume of the biological sample, mixes it with self-contained reagents and transfers the entire volume to an imaging chamber. The geometry of the imaging chamber is chosen to maintain the uniformity of the mixture, and to prevent cells from crowding or clumping, when it is transferred into the imaging chamber. Images of essentially all of the cellular components within the imaging chamber are analyzed to obtain counts per unit volume.
    Type: Grant
    Filed: February 5, 2016
    Date of Patent: October 25, 2022
    Assignee: Medica Corporation
    Inventors: Ronald Jones, Adrian Gropper, Robert Hagopian, Charles Rogers, Thomas Vitella, Donald Barry, Jr., Dirk Osterloh, Chen Yi, Tyler Cote
  • Patent number: 11480778
    Abstract: Disclosed in one aspect is a method for performing a complete blood count (CBC) on a sample of whole blood by metering a predetermined amount of the whole blood and mixing it with a predetermined amount of diluent and stain and transferring a portion thereof to an imaging chamber of fixed dimensions and utilizing an automated microscope with digital camera and cell counting and recognition software to count every white blood cell and red blood corpuscle and platelet in the sample diluent/stain mixture to determine the number of red cells, white cells, and platelets per unit volume, and analyzing the white cells with cell recognition software to classify them.
    Type: Grant
    Filed: June 6, 2019
    Date of Patent: October 25, 2022
    Assignee: Medica Corporation
    Inventors: Ronald Jones, Adrian Gropper, Robert Hagopian, Charles Rogers, Thomas Vitella, Donald Barry, Jr., Dirk Osterloh, Chen Yi, Tyler Cote
  • Publication number: 20210039093
    Abstract: This disclosure describes single-use test cartridges, cell analyzer apparatus, and methods for automatically performing microscopic cell analysis tasks, such as counting and analyzing blood cells in biological samples. A small measured quantity of a biological sample, such as whole blood, is placed in a mixing bowl on the disposable test cartridge after being inserted into the cell analyzer. The analayzer also deposits a known amount of diluent/stain in the mixing bowl and mixes it with the blood. The analyzer takes a measured amount of the mixture and dispenses in a sample cup on the cartridge in fluid communication with an imaging chamber. The geometry of the imaging chamber is chosen to maintain the uniformity of the mixture, and to prevent cells from crowding or clumping as it is transferred into the imaging chamber by the analyzer. Images of all of the cellular components within the imaging chamber are counted and analyzed to obtain a complete blood count.
    Type: Application
    Filed: February 27, 2020
    Publication date: February 11, 2021
    Inventors: Ronald Jones, Adrian Gropper, Robert Hagopian, Charles Rogers, Thomas Vitella, Tyler Cote, Donald Barry, Dirk Osterloh, Chen Yi
  • Publication number: 20200403255
    Abstract: A fuel reformer module (8005) for initiating catalytic partial oxidation (CPOX) to reform a hydrocarbon fuel oxidant mixture (2025, 3025) to output a syngas reformate (2027) to solid oxide fuel cell stack (2080, 5040). A solid non-porous ceramic catalyzing body (3030) includes a plurality of catalyst coated fuel passages (3085). A thermally conductive element (9005, 10005, 11005, 13005), with a coefficient of thermal conductivity of 50 W/m° K or greater is thermally conductively coupled with the catalyzing body. A first thermal sensor (8030) is thermally conductively coupled with the thermally conductive element. A second thermal sensor is thermally conductively coupled with a surface of the fuel cell stack. A control method independently modulates an oxidant input flow rate, based on first thermal sensor signal values, a hydrocarbon fuel input flow rate, based on second thermal sensor signal values.
    Type: Application
    Filed: August 31, 2020
    Publication date: December 24, 2020
    Applicant: Upstart Power, Inc.
    Inventors: Nathan Palumbo, Siddhant Singhal, Matthew Otis, Tyler Cote, Richard Flathers, Paul Osenar
  • Publication number: 20200174241
    Abstract: Disclosed in one aspect is a method for performing a complete blood count (CBC) on a sample of whole blood by metering a predetermined amount of the whole blood and mixing it with a predetermined amount of diluent and stain and transferring a portion thereof to an imaging chamber of fixed dimensions and utilizing an automated microscope with digital camera and cell counting and recognition software to count every white blood cell and red blood corpuscle and platelet in the sample diluent/stain mixture to determine the number of red cells, white cells, and platelets per unit volume, and analyzing the white cells with cell recognition software to classify them.
    Type: Application
    Filed: June 6, 2019
    Publication date: June 4, 2020
    Inventors: Ronald Jones, Adrian Gropper, Robert Hagopian, Charles Rogers, Thomas Vitella, Donald Barry, Dirk Osterloh, Chen Yi, Tyler Cote
  • Patent number: 10625259
    Abstract: This disclosure describes single-use test cartridges, cell analyzer apparatus, and methods for automatically performing microscopic cell analysis tasks, such as counting and analyzing blood cells in biological samples. A small measured quantity of a biological sample, such as whole blood, is placed in a mixing bowl on the disposable test cartridge after being inserted into the cell analyzer. The analyzer also deposits a known amount of diluent/stain in the mixing bowl and mixes it with the blood. The analyzer takes a measured amount of the mixture and dispenses in a sample cup on the cartridge in fluid communication with an imaging chamber. The geometry of the imaging chamber is chosen to maintain the uniformity of the mixture, and to prevent cells from crowding or clumping as it is transferred into the imaging chamber by the analyzer. Images of all of the cellular components within the imaging chamber are counted and analyzed to obtain a complete blood count.
    Type: Grant
    Filed: June 7, 2017
    Date of Patent: April 21, 2020
    Assignee: Medica Corporation
    Inventors: Ronald Jones, Adrian Gropper, Robert Hagopian, Charles Rogers, Thomas Vitella, Tyler Cote, Donald Barry, Dirk Osterloh, Chen Yi
  • Publication number: 20170328924
    Abstract: Disclosed in one aspect is a method for performing a complete blood count (CBC) on a sample of whole blood by metering a predetermined amount of the whole blood and mixing it with a predetermined amount of diluent and stain and transferring a portion thereof to an imaging chamber of fixed dimensions and utilizing an automated microscope with digital camera and cell counting and recognition software to count every white blood cell and red blood corpuscle and platelet in the sample diluent/stain mixture to determine the number of red cells, white cells, and platelets per unit volume, and analyzing the white cells with cell recognition software to classify them.
    Type: Application
    Filed: November 20, 2015
    Publication date: November 16, 2017
    Inventors: Ronald Jones, Adrian Gropper, Robert Hagopian, Charles Rogers, Thomas Vitella, Tyler Cote, Donald Barry, Dirk Osterloh, Chen Yi
  • Publication number: 20170326549
    Abstract: This disclosure describes single-use test cartridges, cell analyzer apparatus, and methods for automatically performing microscopic cell analysis tasks, such as counting blood cells in biological samples. A small unmeasured quantity of a biological sample such as whole blood is placed in the disposable test cartridge which is then inserted into the cell analyzer. The analyzer isolates a precise volume of the biological sample, mixes it with self-contained reagents and transfers the entire volume to an imaging chamber. The geometry of the imaging chamber is chosen to maintain the uniformity of the mixture, and to prevent cells from crowding or clumping, when it is transferred into the imaging chamber. Images of essentially all of the cellular components within the imaging chamber are analyzed to obtain counts per unit volume.
    Type: Application
    Filed: February 5, 2016
    Publication date: November 16, 2017
    Inventors: Ronald Jones, Adrian Gropper, Charles Rogers, Thomas Vitella, Donald Barry, Dirk Osterloh, Chen Yi, Tyler Cote
  • Patent number: 9767343
    Abstract: This disclosure describes single-use test cartridges, cell analyzer apparatus, and methods for automatically performing microscopic cell analysis tasks, such as counting blood cells in biological samples. A small unmeasured quantity of a biological sample such as whole blood is placed in the disposable test cartridge which is then inserted into the cell analyzer. The analyzer isolates a precise volume of the biological sample, mixes it with self-contained reagents and transfers the entire volume to an imaging chamber. The geometry of the imaging chamber is chosen to maintain the uniformity of the mixture, and to prevent cells from crowding or clumping, when it is transferred into the imaging chamber. Images of essentially all of the cellular components within the imaging chamber are analyzed to obtain counts per unit volume.
    Type: Grant
    Filed: July 27, 2016
    Date of Patent: September 19, 2017
    Assignee: Medica Corporation
    Inventors: Ronald Jones, Adrian Gropper, Robert Hagopian, Charles Rogers, Thomas Vitella, Tyler Cote, Donald Barry, Dirk Osterloh, Chen Yi
  • Patent number: 8067245
    Abstract: An apparatus and method of automated blood cell analysis uses technologies from other systems to create a new, robust, improved type of automated microscope, which uses electronic motors and a closed loop control system to minimize ambient factors, such as jarring and temperature changes. Pre-stained blood smear slides are first coated with a thin film of oil and are loaded into a carousel from which they can individually be analyzed. The slides are moved under a low magnification microscope; an optimal area of examination is determined; a focal plane map is calculated for that area, and the positions of white blood cell candidates are computed. The slide is then moved under a high power microscope where a refined focal plane map is computed and the individual white blood cell candidates are imaged. The cells are preclassified and the images are made available for analysis by the technician.
    Type: Grant
    Filed: July 24, 2006
    Date of Patent: November 29, 2011
    Assignee: Medica Corporation
    Inventors: William John van Ryper, Tyler Cote, Steven I. Small, Amy P. Sheng, Ivan Hee Yiu Ma, Ronald Jones
  • Publication number: 20080020128
    Abstract: An apparatus and method of automated blood cell analysis uses technologies from other systems to create a new, robust, improved type of automated microscope, which uses electronic motors and a closed loop control system to minimize ambient factors, such as jarring and temperature changes. Pre-stained blood smear slides are first coated with a thin film of oil and are loaded into a carousel from which they can individually be analyzed. The slides are moved under a low magnification microscope; an optimal area of examination is determined; a focal plane map is calculated for that area, and the positions of white blood cell candidates are computed. The slide is then moved under a high power microscope where a refined focal plane map is computed and the individual white blood cell candidates are imaged. The cells are preclassified and the images are made available for analysis by the technician.
    Type: Application
    Filed: July 24, 2006
    Publication date: January 24, 2008
    Inventors: William John van Ryper, Tyler Cote, Steven I. Small, Amy P. Sheng, Ivan Hee Yiu Ma, Ronald Jones
  • Patent number: 7127957
    Abstract: A modular automated diagnostic analyzer having a fluid entry module for sample aspiration, a valve module for selecting fluids and a pump module for fluidic movement so that a biological samples does not come into contact with the valve system through which calibrants and air are introduced to the fluid path. The fluid entry module encloses an aspiration tube rotatably and slidably engaged with the analysis mechanism chassis to move to different positions for the introduction of fluids into the analysis apparatus from different types of sample containers. A wiping seal removes residues of aspirated fluids from the exterior surfaces of the aspiration tube with the residue being aspirated into the analysis apparatus for disposal. Sensor modules mounted in a sensors chamber are structured to mechanically stack and interlock and include film sensors with use life record memories and each sensor module includes a fluid tight sealed passage and a sensor element.
    Type: Grant
    Filed: February 8, 2005
    Date of Patent: October 31, 2006
    Inventors: Vijay Mathur, Tyler Cote, Ronald Jones, Jane Sun, Steve Rettew, Chen Yi, Tony Mao, Will Whelan, Ken Galano, Richard Dussault
  • Publication number: 20050145020
    Abstract: A modular automated diagnostic analyzer having a fluid entry module for sample aspiration, a valve module for selecting fluids and a pump module for fluidic movement so that a biological samples does not come into contact with the valve system through which calibrants and air are introduced to the fluid path. The fluid entry module encloses an aspiration tube rotatably and slidably engaged with the analysis mechanism chassis to move to different positions for the introduction of fluids into the analysis apparatus from different types of sample containers. A wiping seal removes residues of aspirated fluids from the exterior surfaces of the aspiration tube with the residue being aspirated into the analysis apparatus for disposal. Sensor modules mounted in a sensors chamber are structured to mechanically stack and interlock and include film sensors with use life record memories and each sensor module includes a fluid tight sealed passage and a sensor element.
    Type: Application
    Filed: February 8, 2005
    Publication date: July 7, 2005
    Inventors: Vijay Mathur, Tyler Cote, Ronald Jones, Jane Sun, Steve Rettew, Chen Yi, Tony Mao, Will Whelan, Ken Galano, Richard Dussault
  • Patent number: 6886421
    Abstract: A modular automated diagnostic analyzer having a fluid entry module for sample aspiration, a valve module for selecting fluids and a pump module for fluidic movement so that a biological sample does not come into contact with the valve system through which calibrants and air are introduced to the fluid path. The fluid entry module encloses an aspiration tube rotatably and slidably engaged with the analysis mechanism chassis to move to different positions for the introduction of fluids into the analysis apparatus from different types of sample containers. A wiping seal removes residues of aspirated fluids from the exterior surfaces of the aspiration tube with the residue being aspirated into the analysis apparatus for disposal. Sensor modules mounted in a sensor chamber are structured to mechanically stack and interlock and include film sensors with use life record memories and each sensor module includes a fluid tight sealed passage and a sensor element.
    Type: Grant
    Filed: November 8, 2001
    Date of Patent: May 3, 2005
    Inventors: Vijay Mathur, Tyler Cote, Ronald Jones, Jane Sun, Steve Rettew, Chen Yi, Tony Mao, Will Whelan, Ken Galano, Richard Dussault
  • Publication number: 20020166394
    Abstract: A modular automated diagnostic analyzer having a fluid entry module for sample aspiration, a valve module for selecting fluids and a pump module for fluidic movement. so that a biological sample does not come into contact with the valve system through which calibrants and air are introduced to the fluid path. The fluid entry module encloses an aspiration tube rotatably and slidably engaged with the analysis mechanism chassis to move to different positions for the introduction of fluids into the analysis apparatus from different types of sample containers. A wiping seal removes residues of aspirated fluids from the exterior surfaces of the aspiration tube with the residue being aspirated into the analysis apparatus for disposal. Sensor modules mounted in a sensor chamber are structured to mechanically stack and interlock and include film sensors with use life record memories and each sensor module includes a fluid tight sealed passage and a sensor element.
    Type: Application
    Filed: November 8, 2001
    Publication date: November 14, 2002
    Inventors: Vijay Mathur, Tyler Cote, Ronald Jones, Jane Sun, Steve Rettew, Chen Yi, Tony Mao, Will Whelan, Ken Galano, Richard Dussault