Patents by Inventor Tyler J. Lark

Tyler J. Lark has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10718069
    Abstract: A method for forming biodegradable fibers is provided. The method includes blending polylactic acid with a polyepoxide modifier to form a thermoplastic composition, extruding the thermoplastic composition through a die, and thereafter passing the extruded composition through a die to form a fiber. Without intending to be limited by theory, it is believed that the polyepoxide modifier reacts with the polylactic acid and results in branching of its polymer backbone, thereby improving its melt strength and stability during fiber spinning without significantly reducing glass transition temperature. The reaction-induced branching can also increase molecular weight, which may lead to improved fiber ductility and the ability to better dissipate energy when subjected to an elongation force. Through selective control over this method, the present inventors have discovered that the resulting fibers may exhibit good mechanical properties, both during and after melt spinning.
    Type: Grant
    Filed: October 23, 2014
    Date of Patent: July 21, 2020
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Vasily A. Topolkaraev, Ryan J. McEneany, Thomas A. Eby, Tyler J. Lark
  • Publication number: 20150044929
    Abstract: A method for forming biodegradable fibers is provided. The method includes blending polylactic acid with a polyepoxide modifier to form a thermoplastic composition, extruding the thermoplastic composition through a die, and thereafter passing the extruded composition through a die to form a fiber. Without intending to be limited by theory, it is believed that the polyepoxide modifier reacts with the polylactic acid and results in branching of its polymer backbone, thereby improving its melt strength and stability during fiber spinning without significantly reducing glass transition temperature. The reaction-induced branching can also increase molecular weight, which may lead to improved fiber ductility and the ability to better dissipate energy when subjected to an elongation force. Through selective control over this method, the present inventors have discovered that the resulting fibers may exhibit good mechanical properties, both during and after melt spinning.
    Type: Application
    Filed: October 23, 2014
    Publication date: February 12, 2015
    Inventors: Vasily A. Topolkaraev, Ryan J. McEneany, Thomas A. Eby, Tyler J. Lark
  • Patent number: 8936740
    Abstract: A method for forming biodegradable fibers is provided. The method includes blending polylactic acid with a polyepoxide modifier to form a thermoplastic composition, extruding the thermoplastic composition through a die, and thereafter passing the extruded composition through a die to form a fiber. Without intending to be limited by theory, it is believed that the polyepoxide modifier reacts with the polylactic acid and results in branching of its polymer backbone, thereby improving its melt strength and stability during fiber spinning without significantly reducing glass transition temperature. The reaction-induced branching can also increase molecular weight, which may lead to improved fiber ductility and the ability to better dissipate energy when subjected to an elongation force. To minimize premature reaction, the polylactic acid and polyepoxide modifier are first blended together at a relatively low temperature(s).
    Type: Grant
    Filed: August 13, 2010
    Date of Patent: January 20, 2015
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Vasily A. Topolkaraev, Ryan J. McEneany, Tom Eby, Tyler J. Lark
  • Publication number: 20120164905
    Abstract: A multi-component fiber that includes a core component surrounded by a distinct sheath component is provided. The core component is formed primarily from polylactic acid and the sheath component is formed primarily from a polymeric toughening additive.
    Type: Application
    Filed: February 10, 2012
    Publication date: June 28, 2012
    Applicant: KIMBERLY-CLARK WORLDWIDE, INC.
    Inventors: Vasily A. Topolkaraev, Ryan J. McEneany, Thomas A. Eby, Tyler J. Lark
  • Publication number: 20120040582
    Abstract: A method for forming biodegradable fibers is provided. The method includes blending polylactic acid with a polyepoxide modifier to form a thermoplastic composition, extruding the thermoplastic composition through a die, and thereafter passing the extruded composition through a die to form a fiber. Without intending to be limited by theory, it is believed that the polyepoxide modifier reacts with the polylactic acid and results in branching of its polymer backbone, thereby improving its melt strength and stability during fiber spinning without significantly reducing glass transition temperature. The reaction-induced branching can also increase molecular weight, which may lead to improved fiber ductility and the ability to better dissipate energy when subjected to an elongation force. To minimize premature reaction, the polylactic acid and polyepoxide modifier are first blended together at a relatively low temperature(s).
    Type: Application
    Filed: August 13, 2010
    Publication date: February 16, 2012
    Applicant: KIMBERLY-CLARK WORLDWIDE, INC.
    Inventors: Vasily A. Topolkaraev, Ryan J. McEneany, Tom Eby, Tyler J. Lark