Patents by Inventor Tyler K. Williams

Tyler K. Williams has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130002061
    Abstract: Electrical machines, for example transverse flux machines and/or commutated flux machines, may be “balanced” to achieve reduced overall cogging torque via utilization of one or more cogging torque reduction devices. Cogging torque reduction devices may be configured and/or otherwise customized in order to reduce and/or minimize cogging torque in an electrical machine, by generating a counteracting cogging torque waveform that at least partially counteracts and/or cancels the initial cogging torque waveform of the electrical machine.
    Type: Application
    Filed: June 28, 2012
    Publication date: January 3, 2013
    Applicant: MOTOR EXCELLENCE LLC
    Inventors: Thomas F. Janecek, John M Dyer, Tyler K. Williams
  • Publication number: 20120235519
    Abstract: An electrical machine comprising a rotor, a coil and a stator comprising a lamination stack coupled to a tooth, wherein the electrical machine is at least one of a transversal flux machine is described. The electrical machine may be a transversal flux machine such as a transverse or commutated flux machine. A lamination ring is described comprising a plurality of lamination stacks. A lamination stack may comprise a plurality of trenches configured to retain a plurality of teeth. The tooth may comprise a portion of the switching surface, and a portion of a lamination stack may extend to the surface of the tooth to make up a portion of the switching surface. The electrical machine may be configured with a constant air gap, wherein no more than 15% variability in the distance between the stator switching surface and the rotor switching surface.
    Type: Application
    Filed: March 14, 2012
    Publication date: September 20, 2012
    Applicant: MOTOR EXCELLENCE LLC
    Inventors: John M. Dyer, Thomas F. Janecek, David G. Calley, Daniel S. Cole, Tyler K. Williams
  • Publication number: 20120119610
    Abstract: Electrical machines, for example transverse flux machines and/or commutated flux machines, may be configured to achieve increased efficiency, increased output torque, and/or reduced operating losses via use of laminated materials, for example laminated materials configured with cuts and/or segmentations. Segmentations may also assist with manufacturability, mechanical retention of components, and the like.
    Type: Application
    Filed: November 8, 2011
    Publication date: May 17, 2012
    Applicant: Motor Excellence, LLC
    Inventors: David G. Calley, Daniel S. Cole, John M. Dyer, Thomas F. Janecek, Tyler K. Williams
  • Publication number: 20120119599
    Abstract: Electrical machines, for example transverse flux machines and/or commutated flux machines, may be configured to achieve increased efficiency, increased output torque, and/or reduced operating losses via use of laminated materials in connection with powdered metal materials. For example, stacks of laminated materials may be coupled to powdered metal teeth to form portions of a stator in an electrical machine.
    Type: Application
    Filed: November 8, 2011
    Publication date: May 17, 2012
    Applicant: MOTOR EXCELLENCE, LLC
    Inventors: David G. Calley, Daniel S. Cole, John M. Dyer, Thomas F. Janecek, Tyler K. Williams
  • Publication number: 20090000662
    Abstract: The present invention provides solar concentrators incorporating photovoltaic receiver assemblies with improved thermal dissipation, dielectric, encapsulation, and cell/wiring protection characteristics. The concentrators are particularly useful for photovoltaic power systems such as rooftop mounted systems. The present invention teaches that the geometry of the substrate used to support receiver assemblies can have a dramatic impact upon thermal/dielectric performance. In particular, the present invention teaches how contours incorporated into such substrates can improve thermal performance (i.e., dissipation of thermal energy from photovoltaic cells through the substrate) while still maintaining dielectric and encapsulation objectives. In the past, dielectric and encapsulation objectives have been obtained at the expense of such thermal dissipation. Also, material choice and form also impacts thermal, dielectric, and encapsulation performance.
    Type: Application
    Filed: March 10, 2008
    Publication date: January 1, 2009
    Inventors: Duncan W.J. Harwood, Tyler K. Williams, David T. Youmans