Patents by Inventor Tyler R. Wong
Tyler R. Wong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240398290Abstract: Methods, systems, and devices for continuous glucose monitoring. More particularly, the methods, systems, and devices describe a working electrode with a GOx sensor and a background electrode in which the background electrode has no GOx sensor. The system may then compare the first signal and the second signal to detect ingestion of a medication by the user. The system may generate a sensor glucose value based on the comparison.Type: ApplicationFiled: August 13, 2024Publication date: December 5, 2024Inventors: Soroush Hossein Yazdi, Melissa Tsang, Ellis Garai, Sadaf S. Seleh, Steven Lai, Luis A. Torres, Bradley Petkus, Xin Heng, Zhenzhong Sun, Akhil Srinivasan, Tyler R. Wong
-
Patent number: 12064236Abstract: Methods, systems, and devices for continuous glucose monitoring. More particularly, the methods, systems, and devices describe a working electrode with a GOx sensor and a background electrode in which the background electrode has no GOx sensor. The system may then compare the first signal and the second signal to detect ingestion of a medication by the user. The system may generate a sensor glucose value based on the comparison.Type: GrantFiled: June 11, 2020Date of Patent: August 20, 2024Assignee: MEDTRONIC MINIMED, INC.Inventors: Soroush Hossein Yazdi, Melissa Tsang, Ellis Garai, Sadaf S. Seleh, Steven Lai, Luis A. Torres, Bradley Petkus, Xin Heng, Zhenzhong Sun, Akhil Srinivasan, Tyler R. Wong
-
Publication number: 20230240569Abstract: Embodiments of the invention provide optimized sputtered metallic surfaces adapted for use with implantable medical devices as well as methods for making and using such polymeric surfaces. These sputtered metallic surfaces have features that function to inhibit or avoid an inflammatory immune response generated by implantable medical devices. Typical embodiments of the invention include an implantable glucose sensor used in the management of diabetes having a sputtered metallic surface adapted to contact an in vivo environment.Type: ApplicationFiled: April 5, 2023Publication date: August 3, 2023Applicant: Medtronic MiniMed, Inc.Inventors: Akhil Srinivasan, Tyler R. Wong, Inthirai Somasuntharam
-
Publication number: 20230241315Abstract: Medical devices and related systems and methods are provided. A method of controlling medication delivery based on sensor input involves obtaining a measurement parameter representing an electrical response of a first instance of a sensing element to a physiological condition of a person. The measurement parameter is converted into a calibrated measurement parameter using calibration data specific to the first instance of the sensing element. The method further involves determining a measurement value using the calibrated measurement parameter as input to a performance model. The performance model is derived from historical calibrated measurement parameters and corresponding reference values. The historical calibrated measurement parameters are from other instances of the sensing element. A command is then determined based on the measurement value and sent to a medical device. The command causes the medical device to deliver a dose of medication influencing the physiological condition of the person.Type: ApplicationFiled: April 7, 2023Publication date: August 3, 2023Inventors: Akhil Srinivasan, Peter Ajemba, Steven C. Jacks, Robert C. Mucic, Tyler R. Wong, Melissa Tsang, Chi-En Lin, Mohsen Askarinya, David Probst
-
Patent number: 11654235Abstract: Medical devices and related systems and methods are provided. A method of calibrating an instance of a sensing element involves obtaining fabrication process measurement data from a substrate having the instance of the sensing element fabricated thereon, obtaining a calibration model associated with the sensing element, determining calibration data associated with the instance of the sensing element for converting the electrical signals into a calibrated measurement parameter based on the fabrication process measurement data using the calibration model, and storing the calibration data in a data storage element associated with the instance of the sensing element.Type: GrantFiled: September 12, 2019Date of Patent: May 23, 2023Assignee: MEDTRONIC MINIMED, INC.Inventors: Akhil Srinivasan, Peter Ajemba, Steven C. Jacks, Robert C. Mucic, Tyler R. Wong, Melissa Tsang, Chi-En Lin, Mohsen Askarinya, David Probst
-
Publication number: 20230060985Abstract: A single flex double-sided electrode useful in a continuous glucose monitoring sensor. In one example, a counter electrode is placed on the back-side of the flex and a work electrode is placed on the top-side of the sensor flex. The electrode is fabricated on physical vapor deposited metal deposited on a base substrate. Adhesion of the electrode to the base substrate is carefully controlled so that the electrode can be processed on the substrate and subsequently removed from the substrate after processing.Type: ApplicationFiled: October 25, 2022Publication date: March 2, 2023Applicant: Medtronic MiniMed, Inc.Inventors: Akhil Srinivasan, Barry P. Pham, Robert C. Mucic, Tyler R. Wong
-
Patent number: 11583213Abstract: A single flex double-sided electrode useful in a continuous glucose monitoring sensor. In one example, a counter electrode is placed on the back-side of the flex and a work electrode is placed on the top-side of the sensor flex. The electrode is fabricated on physical vapor deposited metal deposited on a base substrate. Adhesion of the electrode to the base substrate is carefully controlled so that the electrode can be processed on the substrate and subsequently removed from the substrate after processing.Type: GrantFiled: February 8, 2018Date of Patent: February 21, 2023Assignee: MEDTRONIC MINIMED, INC.Inventors: Akhil Srinivasan, Barry P. Pham, Robert C. Mucic, Tyler R. Wong
-
Publication number: 20220054057Abstract: The invention disclosed herein includes electrode compositions formed from processes that sputter metal in a manner that produces pillar architectures. Embodiments of the invention can be used in analyte sensors having such electrode architectures as well as methods for making and using these sensor electrodes. A number of working embodiments of the invention are shown to be useful in amperometric glucose sensors worn by diabetic individuals. However, the metal pillar structures have wide ranging applicability and should increase surface area and decrease charge density for catalyst layers or electrodes used with sensing, power generation, recording, and stimulation, in vitro and/or in the body, or outside the body.Type: ApplicationFiled: September 3, 2021Publication date: February 24, 2022Applicant: Medtronic MiniMed, Inc.Inventors: Akhil Srinivasan, Melissa Tsang, Robert C. Mucic, Tyler R. Wong, Rui Kong, Barry P. Pham
-
Publication number: 20210386331Abstract: Methods, systems, and devices for continuous glucose monitoring. More particularly, the methods, systems, and devices describe a working electrode with a GOx sensor and a background electrode in which the background electrode has no GOx sensor. The system may then compare the first signal and the second signal to detect ingestion of a medication by the user. The system may generate a sensor glucose value based on the comparison.Type: ApplicationFiled: June 11, 2020Publication date: December 16, 2021Inventors: SOROUSH HOSSEIN YAZDI, MELISSA TSANG, ELLIS GARAI, SADAF S. SELEH, STEVEN LAI, LUIS A. TORRES, BRADLEY PETKUS, XIN HENG, ZHENZHONG SUN, AKHIL SRINIVASAN, TYLER R. WONG
-
Patent number: 11134868Abstract: The invention disclosed herein includes electrode compositions formed from processes that sputter metal in a manner that produces pillar architectures. Embodiments of the invention can be used in analyte sensors having such electrode architectures as well as methods for making and using these sensor electrodes. A number of working embodiments of the invention are shown to be useful in amperometric glucose sensors worn by diabetic individuals. However, the metal pillar structures have wide ranging applicability and should increase surface area and decrease charge density for catalyst layers or electrodes used with sensing, power generation, recording, and stimulation, in vitro and/or in the body, or outside the body.Type: GrantFiled: March 15, 2018Date of Patent: October 5, 2021Assignee: Medtronic MiniMed, Inc.Inventors: Akhil Srinivasan, Melissa Tsang, Robert C. Mucic, Tyler R. Wong, Rui Kong, Barry P. Pham
-
Publication number: 20210077717Abstract: Medical devices and related systems and methods are provided. A method of calibrating an instance of a sensing element involves obtaining fabrication process measurement data from a substrate having the instance of the sensing element fabricated thereon, obtaining a calibration model associated with the sensing element, determining calibration data associated with the instance of the sensing element for converting the electrical signals into a calibrated measurement parameter based on the fabrication process measurement data using the calibration model, and storing the calibration data in a data storage element associated with the instance of the sensing element.Type: ApplicationFiled: September 12, 2019Publication date: March 18, 2021Inventors: Akhil Srinivasan, Peter Ajemba, Steven C. Jacks, Robert C. Mucic, Tyler R. Wong, Melissa Tsang, Chi-En Lin, Mohsen Askarinya, David Probst
-
Publication number: 20190239778Abstract: A single flex double-sided electrode useful in a continuous glucose monitoring sensor. In one example, a counter electrode is placed on the back-side of the flex and a work electrode is placed on the top-side of the sensor flex. The electrode is fabricated on physical vapor deposited metal deposited on a base substrate. Adhesion of the electrode to the base substrate is carefully controlled so that the electrode can be processed on the substrate and subsequently removed from the substrate after processing.Type: ApplicationFiled: February 8, 2018Publication date: August 8, 2019Applicant: MEDTRONIC MINIMED, INC.Inventors: Akhil Srinivasan, Barry P. Pham, Robert C. Mucic, Tyler R. Wong
-
Publication number: 20190008425Abstract: The invention disclosed herein includes electrode compositions formed from processes that sputter metal in a manner that produces pillar architectures. Embodiments of the invention can be used in analyte sensors having such electrode architectures as well as methods for making and using these sensor electrodes. A number of working embodiments of the invention are shown to be useful in amperometric glucose sensors worn by diabetic individuals. However, the metal pillar structures have wide ranging applicability and should increase surface area and decrease charge density for catalyst layers or electrodes used with sensing, power generation, recording, and stimulation, in vitro and/or in the body, or outside the body.Type: ApplicationFiled: March 15, 2018Publication date: January 10, 2019Applicant: MEDTRONIC MINIMED, INC.Inventors: Akhil Srinivasan, Melissa Tsang, Robert C. Mucic, Tyler R. Wong, Rui Kong, Barry P. Pham