Patents by Inventor Tyler R. Wong

Tyler R. Wong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230241315
    Abstract: Medical devices and related systems and methods are provided. A method of controlling medication delivery based on sensor input involves obtaining a measurement parameter representing an electrical response of a first instance of a sensing element to a physiological condition of a person. The measurement parameter is converted into a calibrated measurement parameter using calibration data specific to the first instance of the sensing element. The method further involves determining a measurement value using the calibrated measurement parameter as input to a performance model. The performance model is derived from historical calibrated measurement parameters and corresponding reference values. The historical calibrated measurement parameters are from other instances of the sensing element. A command is then determined based on the measurement value and sent to a medical device. The command causes the medical device to deliver a dose of medication influencing the physiological condition of the person.
    Type: Application
    Filed: April 7, 2023
    Publication date: August 3, 2023
    Inventors: Akhil Srinivasan, Peter Ajemba, Steven C. Jacks, Robert C. Mucic, Tyler R. Wong, Melissa Tsang, Chi-En Lin, Mohsen Askarinya, David Probst
  • Publication number: 20230240569
    Abstract: Embodiments of the invention provide optimized sputtered metallic surfaces adapted for use with implantable medical devices as well as methods for making and using such polymeric surfaces. These sputtered metallic surfaces have features that function to inhibit or avoid an inflammatory immune response generated by implantable medical devices. Typical embodiments of the invention include an implantable glucose sensor used in the management of diabetes having a sputtered metallic surface adapted to contact an in vivo environment.
    Type: Application
    Filed: April 5, 2023
    Publication date: August 3, 2023
    Applicant: Medtronic MiniMed, Inc.
    Inventors: Akhil Srinivasan, Tyler R. Wong, Inthirai Somasuntharam
  • Patent number: 11654235
    Abstract: Medical devices and related systems and methods are provided. A method of calibrating an instance of a sensing element involves obtaining fabrication process measurement data from a substrate having the instance of the sensing element fabricated thereon, obtaining a calibration model associated with the sensing element, determining calibration data associated with the instance of the sensing element for converting the electrical signals into a calibrated measurement parameter based on the fabrication process measurement data using the calibration model, and storing the calibration data in a data storage element associated with the instance of the sensing element.
    Type: Grant
    Filed: September 12, 2019
    Date of Patent: May 23, 2023
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Akhil Srinivasan, Peter Ajemba, Steven C. Jacks, Robert C. Mucic, Tyler R. Wong, Melissa Tsang, Chi-En Lin, Mohsen Askarinya, David Probst
  • Publication number: 20230060985
    Abstract: A single flex double-sided electrode useful in a continuous glucose monitoring sensor. In one example, a counter electrode is placed on the back-side of the flex and a work electrode is placed on the top-side of the sensor flex. The electrode is fabricated on physical vapor deposited metal deposited on a base substrate. Adhesion of the electrode to the base substrate is carefully controlled so that the electrode can be processed on the substrate and subsequently removed from the substrate after processing.
    Type: Application
    Filed: October 25, 2022
    Publication date: March 2, 2023
    Applicant: Medtronic MiniMed, Inc.
    Inventors: Akhil Srinivasan, Barry P. Pham, Robert C. Mucic, Tyler R. Wong
  • Patent number: 11583213
    Abstract: A single flex double-sided electrode useful in a continuous glucose monitoring sensor. In one example, a counter electrode is placed on the back-side of the flex and a work electrode is placed on the top-side of the sensor flex. The electrode is fabricated on physical vapor deposited metal deposited on a base substrate. Adhesion of the electrode to the base substrate is carefully controlled so that the electrode can be processed on the substrate and subsequently removed from the substrate after processing.
    Type: Grant
    Filed: February 8, 2018
    Date of Patent: February 21, 2023
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Akhil Srinivasan, Barry P. Pham, Robert C. Mucic, Tyler R. Wong
  • Publication number: 20220054057
    Abstract: The invention disclosed herein includes electrode compositions formed from processes that sputter metal in a manner that produces pillar architectures. Embodiments of the invention can be used in analyte sensors having such electrode architectures as well as methods for making and using these sensor electrodes. A number of working embodiments of the invention are shown to be useful in amperometric glucose sensors worn by diabetic individuals. However, the metal pillar structures have wide ranging applicability and should increase surface area and decrease charge density for catalyst layers or electrodes used with sensing, power generation, recording, and stimulation, in vitro and/or in the body, or outside the body.
    Type: Application
    Filed: September 3, 2021
    Publication date: February 24, 2022
    Applicant: Medtronic MiniMed, Inc.
    Inventors: Akhil Srinivasan, Melissa Tsang, Robert C. Mucic, Tyler R. Wong, Rui Kong, Barry P. Pham
  • Publication number: 20210386331
    Abstract: Methods, systems, and devices for continuous glucose monitoring. More particularly, the methods, systems, and devices describe a working electrode with a GOx sensor and a background electrode in which the background electrode has no GOx sensor. The system may then compare the first signal and the second signal to detect ingestion of a medication by the user. The system may generate a sensor glucose value based on the comparison.
    Type: Application
    Filed: June 11, 2020
    Publication date: December 16, 2021
    Inventors: SOROUSH HOSSEIN YAZDI, MELISSA TSANG, ELLIS GARAI, SADAF S. SELEH, STEVEN LAI, LUIS A. TORRES, BRADLEY PETKUS, XIN HENG, ZHENZHONG SUN, AKHIL SRINIVASAN, TYLER R. WONG
  • Patent number: 11134868
    Abstract: The invention disclosed herein includes electrode compositions formed from processes that sputter metal in a manner that produces pillar architectures. Embodiments of the invention can be used in analyte sensors having such electrode architectures as well as methods for making and using these sensor electrodes. A number of working embodiments of the invention are shown to be useful in amperometric glucose sensors worn by diabetic individuals. However, the metal pillar structures have wide ranging applicability and should increase surface area and decrease charge density for catalyst layers or electrodes used with sensing, power generation, recording, and stimulation, in vitro and/or in the body, or outside the body.
    Type: Grant
    Filed: March 15, 2018
    Date of Patent: October 5, 2021
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Akhil Srinivasan, Melissa Tsang, Robert C. Mucic, Tyler R. Wong, Rui Kong, Barry P. Pham
  • Publication number: 20210077717
    Abstract: Medical devices and related systems and methods are provided. A method of calibrating an instance of a sensing element involves obtaining fabrication process measurement data from a substrate having the instance of the sensing element fabricated thereon, obtaining a calibration model associated with the sensing element, determining calibration data associated with the instance of the sensing element for converting the electrical signals into a calibrated measurement parameter based on the fabrication process measurement data using the calibration model, and storing the calibration data in a data storage element associated with the instance of the sensing element.
    Type: Application
    Filed: September 12, 2019
    Publication date: March 18, 2021
    Inventors: Akhil Srinivasan, Peter Ajemba, Steven C. Jacks, Robert C. Mucic, Tyler R. Wong, Melissa Tsang, Chi-En Lin, Mohsen Askarinya, David Probst
  • Publication number: 20190239778
    Abstract: A single flex double-sided electrode useful in a continuous glucose monitoring sensor. In one example, a counter electrode is placed on the back-side of the flex and a work electrode is placed on the top-side of the sensor flex. The electrode is fabricated on physical vapor deposited metal deposited on a base substrate. Adhesion of the electrode to the base substrate is carefully controlled so that the electrode can be processed on the substrate and subsequently removed from the substrate after processing.
    Type: Application
    Filed: February 8, 2018
    Publication date: August 8, 2019
    Applicant: MEDTRONIC MINIMED, INC.
    Inventors: Akhil Srinivasan, Barry P. Pham, Robert C. Mucic, Tyler R. Wong
  • Publication number: 20190008425
    Abstract: The invention disclosed herein includes electrode compositions formed from processes that sputter metal in a manner that produces pillar architectures. Embodiments of the invention can be used in analyte sensors having such electrode architectures as well as methods for making and using these sensor electrodes. A number of working embodiments of the invention are shown to be useful in amperometric glucose sensors worn by diabetic individuals. However, the metal pillar structures have wide ranging applicability and should increase surface area and decrease charge density for catalyst layers or electrodes used with sensing, power generation, recording, and stimulation, in vitro and/or in the body, or outside the body.
    Type: Application
    Filed: March 15, 2018
    Publication date: January 10, 2019
    Applicant: MEDTRONIC MINIMED, INC.
    Inventors: Akhil Srinivasan, Melissa Tsang, Robert C. Mucic, Tyler R. Wong, Rui Kong, Barry P. Pham