Patents by Inventor Tyler S. Ralston

Tyler S. Ralston has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10082565
    Abstract: Circuitry for ultrasound devices is described. A multilevel pulser is described, which can provide bipolar pulses of multiple levels. The multilevel pulser includes a pulsing circuit and pulser and feedback circuit. Symmetric switches are also described. The symmetric switches can be positioned as inputs to ultrasound receiving circuitry to block signals from the receiving circuitry.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: September 25, 2018
    Assignee: Butterfly Network, Inc.
    Inventors: Kailiang Chen, Tyler S. Ralston, Keith G. Fife
  • Patent number: 10082488
    Abstract: An ultrasound device, including a profile generator, an encoder configured to receive a profile signal from the profile generator, and an attenuator configured to receive a signal representing an output of an ultrasound sensor and coupled to the encoder to receive a control signal from the encoder, the attenuator including a plurality of attenuator stages, the attenuator configured to produce an output signal that is an attenuated version of the input signal.
    Type: Grant
    Filed: December 2, 2015
    Date of Patent: September 25, 2018
    Assignee: Butterfly Network, Inc.
    Inventors: Kailiang Chen, Tyler S. Ralston
  • Publication number: 20180262200
    Abstract: An ultrasound device including an asynchronous successive approximation analog-to-digital converter and method are provided. The device includes at least one ultrasonic transducer, a plurality of asynchronous successive-approximation-register (SAR) analog-to-digital converters (ADC) coupled to the at least one ultrasonic transducer, at least one asynchronous SAR in the plurality having a sample and hold stage, a digital-to-analog converter (DAC), a comparator, and control circuitry, wherein a DAC update event following at least one bit conversion is synchronized to a corresponding DAC update event of at least one other ADC in the plurality of ADCs.
    Type: Application
    Filed: May 15, 2018
    Publication date: September 13, 2018
    Applicant: Butterfly Network, Inc.
    Inventors: Kailiang Chen, Tyler S. Ralston
  • Publication number: 20180257927
    Abstract: Micromachined ultrasonic transducers integrated with complementary metal oxide semiconductor (CMOS) substrates are described, as well as methods of fabricating such devices. Fabrication may involve two separate wafer bonding steps. Wafer bonding may be used to fabricate sealed cavities in a substrate. Wafer bonding may also be used to bond the substrate to another substrate, such as a CMOS wafer. At least the second wafer bonding may be performed at a low temperature.
    Type: Application
    Filed: March 8, 2017
    Publication date: September 13, 2018
    Inventors: Jonathan M. Rothberg, Susan A. Alie, Keith G. Fife, Nevada J. Sanchez, Tyler S. Ralston, Jaime Scott Zahorian
  • Publication number: 20180210073
    Abstract: Apparatus and methods are provided directed to a device, including at least one ultrasonic transducer, a multi-level pulser coupled to the at least one ultrasonic transducer; the multi-level pulser including a plurality of input terminals configured to receive respective input voltages, an output terminal configured to provide an output voltage, and a signal path between a first input terminal and the output terminal including a first transistor having a first conductivity type coupled to a first diode and, in parallel, a second transistor having a second conductivity type coupled to a second diode.
    Type: Application
    Filed: March 23, 2018
    Publication date: July 26, 2018
    Applicant: Butterfly Network, Inc.
    Inventors: Kailiang Chen, Tyler S. Ralston
  • Publication number: 20180186628
    Abstract: Complementary metal oxide semiconductor (CMOS) ultrasonic transducers (CUTs) and methods for forming CUTs are described. The CUTs may include monolithically integrated ultrasonic transducers and integrated circuits for operating in connection with the transducers. The CUTs may be used in ultrasound devices such as ultrasound imaging devices and/or high intensity focused ultrasound (HIFU) devices.
    Type: Application
    Filed: March 2, 2018
    Publication date: July 5, 2018
    Applicant: Butterfly Network, Inc.
    Inventors: Jonathan M. Rothberg, Keith G. Fife, Tyler S. Ralston, Gregory L. Charvat, Nevada J. Sanchez
  • Patent number: 10014871
    Abstract: An ultrasound device including an asynchronous successive approximation analog-to-digital converter and method are provided. The device includes at least one ultrasonic transducer, a plurality of asynchronous successive-approximation-register (SAR) analog-to-digital converters (ADC) coupled to the at least one ultrasonic transducer, at least one asynchronous SAR in the plurality having a sample and hold stage, a digital-to-analog converter (DAC), a comparator, and control circuitry, wherein a DAC update event following at least one bit conversion is synchronized to a corresponding DAC update event of at least one other ADC in the plurality of ADCs.
    Type: Grant
    Filed: May 25, 2017
    Date of Patent: July 3, 2018
    Assignee: Butterfly Network, Inc.
    Inventors: Kailiang Chen, Tyler S. Ralston
  • Publication number: 20180143281
    Abstract: Some aspects include a method of detecting change in degree of midline shift in a brain of a patient. The method comprises, while the patient remains positioned within the low-field magnetic resonance imaging device, acquiring first magnetic resonance (MR) image data and second MR image data of the patient's brain; providing the first and second MR data as input to a trained statistical classifier to obtain corresponding first and second output, identifying, from the first output, at least one initial location of at least one landmark associated with at least one midline structure of the patient's brain; identifying, from the second output, at least one updated location of the at least one landmark; and determining a degree of change in the midline shift using the at least one initial location of the at least one landmark and the at least one updated location of the at least one landmark.
    Type: Application
    Filed: November 21, 2017
    Publication date: May 24, 2018
    Applicant: Hyperfine Research, Inc.
    Inventors: Michal Sofka, Jonathan M. Rothberg, Gregory L. Charvat, Tyler S. Ralston
  • Publication number: 20180143275
    Abstract: Some aspects include a method of detecting change in biological subject matter of a patient positioned within a low-field magnetic resonance imaging device, the method comprising: while the patient remains positioned within the low-field magnetic resonance device: acquiring first magnetic resonance image data of a portion of the patient; acquiring second magnetic resonance image data of the portion of the patient subsequent to acquiring the first magnetic resonance image data; aligning the first magnetic resonance image data and the second magnetic resonance image data; and comparing the aligned first magnetic resonance image data and second magnetic resonance image data to detect at least one change in the biological subject matter of the portion of the patient.
    Type: Application
    Filed: November 21, 2017
    Publication date: May 24, 2018
    Applicant: Hyperfine Research, Inc.
    Inventors: Michal Sofka, Jonathan M. Rothberg, Gregory L. Charvat, Tyler S. Ralston
  • Publication number: 20180144467
    Abstract: Some aspects include a method of determining change in size of an abnormality in a brain of a patient positioned within a low-field magnetic resonance imaging (MRI) device. The method comprises, while the patient remains positioned within the low-field MRI device, acquiring first and second magnetic resonance (MR) image data of the patient's brain; providing the first and second MR image data as input to a trained statistical classifier to obtain corresponding first and second output; identifying, using the first output, at least one initial value of at least one feature indicative of a size of the abnormality; identifying, using the second output, at least one updated value of the at least one feature; determining the change in the size of the abnormality using the at least one initial value of the at least one feature and the at least one updated value of the at least one feature.
    Type: Application
    Filed: November 21, 2017
    Publication date: May 24, 2018
    Applicant: Hyperfine Research, Inc.
    Inventors: Michal Sofka, Jonathan M. Rothberg, Gregory L. Charvat, Tyler S. Ralston
  • Publication number: 20180133756
    Abstract: CMOS Ultrasonic Transducers and processes for making such devices are described. The processes may include forming cavities on a first wafer and bonding the first wafer to a second wafer. The second wafer may be processed to form a membrane for the cavities. Electrical access to the cavities may be provided.
    Type: Application
    Filed: January 11, 2018
    Publication date: May 17, 2018
    Inventors: Jonathan M. Rothberg, Keith G. Fife, Tyler S. Ralston, Gregory L. Charvat, Nevada J. Sanchez
  • Patent number: 9958537
    Abstract: Apparatus and methods are provided directed to a device, including at least one ultrasonic transducer, a multi-level pulser coupled to the at least one ultrasonic transducer; the multi-level pulser including a plurality of input terminals configured to receive respective input voltages, an output terminal configured to provide an output voltage, and a signal path between a first input terminal and the output terminal including a first transistor having a first conductivity type coupled to a first diode and, in parallel, a second transistor having a second conductivity type coupled to a second diode.
    Type: Grant
    Filed: July 10, 2017
    Date of Patent: May 1, 2018
    Assignee: Butterfly Networks, Inc.
    Inventors: Kailiang Chen, Tyler S. Ralston
  • Patent number: 9944514
    Abstract: Complementary metal oxide semiconductor (CMOS) ultrasonic transducers (CUTs) and methods for forming CUTs are described. The CUTs may include monolithically integrated ultrasonic transducers and integrated circuits for operating in connection with the transducers. The CUTs may be used in ultrasound devices such as ultrasound imaging devices and/or high intensity focused ultrasound (HIFU) devices.
    Type: Grant
    Filed: June 19, 2017
    Date of Patent: April 17, 2018
    Assignee: Butterfly Network, Inc.
    Inventors: Jonathan M. Rothberg, Keith G. Fife, Tyler S. Ralston, Gregory L. Charvat, Nevada J. Sanchez
  • Patent number: 9933516
    Abstract: Apparatus and methods are provided directed to a device, including at least one ultrasonic transducer, a multi-level pulser coupled to the at least one ultrasonic transducer; the multi-level pulser including a plurality of input terminals configured to receive respective input voltages, an output terminal configured to provide an output voltage, and a signal path between a first input terminal and the output terminal including a first transistor having a first conductivity type coupled to a first diode and, in parallel, a second transistor having a second conductivity type coupled to a second diode.
    Type: Grant
    Filed: October 7, 2016
    Date of Patent: April 3, 2018
    Assignee: Butterfly Network, Inc.
    Inventors: Kailiang Chen, Tyler S. Ralston
  • Publication number: 20180070917
    Abstract: An ingestible ultrasound device includes an electronic circuit assembly, including a plurality of ultrasonic transducers and control circuitry configured to control the plurality of ultrasonic transducers to generate and/or detect ultrasound signals; and an encapsulating medium that encapsulates the electronic circuit assembly.
    Type: Application
    Filed: September 13, 2016
    Publication date: March 15, 2018
    Applicant: Butterfly Network, Inc.
    Inventors: Jonathan M. Rothberg, Christopher Thomas McNulty, Nevada J. Sanchez, Tyler S. Ralston
  • Patent number: 9910018
    Abstract: Micromachined ultrasonic transducers integrated with complementary metal oxide semiconductor (CMOS) substrates are described, as well as methods of fabricating such devices. Fabrication may involve two separate wafer bonding steps. Wafer bonding may be used to fabricate sealed cavities in a substrate. Wafer bonding may also be used to bond the substrate to another substrate, such as a CMOS wafer. At least the second wafer bonding may be performed at a low temperature.
    Type: Grant
    Filed: June 9, 2016
    Date of Patent: March 6, 2018
    Assignee: Butterfly Network, Inc.
    Inventors: Jonathan M. Rothberg, Susan A. Alie, Keith G. Fife, Nevada J. Sanchez, Tyler S. Ralston
  • Patent number: 9910017
    Abstract: Micromachined ultrasonic transducers integrated with complementary metal oxide semiconductor (CMOS) substrates are described, as well as methods of fabricating such devices. Fabrication may involve two separate wafer bonding steps. Wafer bonding may be used to fabricate sealed cavities in a substrate. Wafer bonding may also be used to bond the substrate to another substrate, such as a CMOS wafer. At least the second wafer bonding may be performed at a low temperature.
    Type: Grant
    Filed: June 9, 2016
    Date of Patent: March 6, 2018
    Assignee: Butterfly Network, Inc.
    Inventors: Jonathan M. Rothberg, Susan A. Alie, Keith G. Fife, Nevada J. Sanchez, Tyler S. Ralston
  • Patent number: 9895718
    Abstract: CMOS Ultrasonic Transducers and processes for making such devices are described. The processes may include forming cavities on a first wafer and bonding the first wafer to a second wafer. The second wafer may be processed to form a membrane for the cavities. Electrical access to the cavities may be provided.
    Type: Grant
    Filed: November 11, 2016
    Date of Patent: February 20, 2018
    Assignee: Butterfly Network, Inc.
    Inventors: Jonathan M. Rothberg, Keith G. Fife, Tyler S. Ralston, Gregory L. Charvat, Nevada J. Sanchez
  • Publication number: 20180003678
    Abstract: Micromachined ultrasonic transducers integrated with complementary metal oxide semiconductor (CMOS) substrates are described, as well as methods of fabricating such devices. Fabrication may involve two separate wafer bonding steps. Wafer bonding may be used to fabricate sealed cavities in a substrate. Wafer bonding may also be used to bond the substrate to another substrate, such as a CMOS wafer. At least the second wafer bonding may be performed at a low temperature.
    Type: Application
    Filed: August 29, 2017
    Publication date: January 4, 2018
    Applicant: Butterfly Network, Inc.
    Inventors: Jonathan M. Rothberg, Susan A. Alie, Keith G. Fife, Nevada J. Sanchez, Tyler S. Ralston
  • Publication number: 20170360415
    Abstract: A system comprising a multi-modal ultrasound probe configured to operate in a plurality of operating modes associated with a respective plurality of configuration profiles; and a computing device coupled to the handheld multi-modal ultrasound probe and configured to, in response to receiving input indicating an operating mode selected by a user, cause the multi-modal ultrasound probe to operate in the selected operating mode.
    Type: Application
    Filed: June 23, 2017
    Publication date: December 21, 2017
    Applicant: Butterfly Network, Inc.
    Inventors: Jonathan M. Rothberg, Susan A. Alie, Nevada J. Sanchez, Tyler S. Ralston, Christopher Thomas McNulty, Jaime Scott Zahorian, Paul Francis Cristman, Matthew de Jonge, Keith G. Fife, David Elgena