Patents by Inventor Tyler S. Ralston

Tyler S. Ralston has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10980511
    Abstract: Ultrasound devices and methods are described, including a repeatable ultrasound transducer probe having ultrasonic transducers and corresponding circuitry. The repeatable ultrasound transducer probe may be used individually or coupled with other instances of the repeatable ultrasound transducer probe to create a desired ultrasound device. The ultrasound devices may optionally be connected to various types of external devices to provide additional processing and image rendering functionality.
    Type: Grant
    Filed: February 1, 2017
    Date of Patent: April 20, 2021
    Assignee: Butterfly Network, Inc.
    Inventors: Jonathan M. Rothberg, Keith G. Fife, Nevada J. Sanchez, Tyler S. Ralston, Gregory L. Charvat, Gregory Corteville
  • Patent number: 10972842
    Abstract: Aspects of the technology described herein relate to ultrasound circuits that employ a differential ultrasonic transducer element, such as a differential micromachined ultrasonic transducer (MUT) element. The differential ultrasonic transducer element may be coupled to an integrated circuit that is configured to operate the differential ultrasonic transducer element in one or more modes of operation, such as a differential receive mode, a differential transmit mode, a single-ended receive mode, and a single-ended transmit mode.
    Type: Grant
    Filed: June 22, 2018
    Date of Patent: April 6, 2021
    Assignee: Butterfly Network, Inc.
    Inventors: Joseph Lutsky, Nevada J. Sanchez, Kailiang Chen, Keith G. Fife, Tyler S. Ralston
  • Patent number: 10955504
    Abstract: Some aspects include a method of detecting change in biological subject matter of a patient positioned within a low-field magnetic resonance imaging device, the method comprising: while the patient remains positioned within the low-field magnetic resonance device: acquiring first magnetic resonance image data of a portion of the patient; acquiring second magnetic resonance image data of the portion of the patient subsequent to acquiring the first magnetic resonance image data; aligning the first magnetic resonance image data and the second magnetic resonance image data; and comparing the aligned first magnetic resonance image data and second magnetic resonance image data to detect at least one change in the biological subject matter of the portion of the patient.
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: March 23, 2021
    Assignee: Hyperfine Research, Inc.
    Inventors: Michal Sofka, Jonathan M. Rothberg, Gregory L. Charvat, Tyler S. Ralston
  • Publication number: 20210048517
    Abstract: Circuitry for ultrasound devices is described. A multi-level pulser is described, which can support time-domain and spatial apodization. The multi-level pulser may be controlled through a software-defined waveform generator. In response to the execution of a computer code, the waveform generator may access master segments from a memory, and generate a stream of packets directed to pulsing circuits. The stream of packets may be serialized. A plurality of decoding circuits may modulate the streams of packets to obtain spatial apodization.
    Type: Application
    Filed: November 3, 2020
    Publication date: February 18, 2021
    Applicant: Butterfly Network, Inc.
    Inventors: Liewei Bao, Kailiang Chen, Tyler S. Ralston, Nevada J. Sanchez
  • Publication number: 20210033687
    Abstract: A method of producing a permanent magnet shim configured to improve a profile of a B0 magnetic field produced by a B0 magnet is provided. The method comprises determining deviation of the B0 magnetic field from a desired B0 magnetic field, determining a magnetic pattern that, when applied to magnetic material, produces a corrective magnetic field that corrects for at least some of the determined deviation, and applying the magnetic pattern to the magnetic material to produce the permanent magnet shim. According to some aspects, a permanent magnet shim for improving a profile of a B0 magnetic field produced by a B0 magnet is provided. The permanent magnet shim comprises magnetic material having a predetermined magnetic pattern applied thereto that produces a corrective magnetic field to improve the profile of the B0 magnetic field.
    Type: Application
    Filed: October 5, 2020
    Publication date: February 4, 2021
    Applicant: Hyperfine Research, Inc.
    Inventors: Cedric Hugon, Michael Stephen Poole, Tyler S. Ralston
  • Publication number: 20200397287
    Abstract: Aspects of the present disclosure provide improved techniques for imaging a subject's retina fundus. Some aspects relate to an imaging apparatus that may be substantially binocular shaped and/or may house multiple imaging devices configured to provide multiple corresponding modes of imaging the subject's retina fundus. Some aspects relate to techniques for imaging a subject's eye using white light, fluorescence, infrared (IR), optical coherence tomography (OCT), and/or other imaging modalities that may be employed by a single imaging apparatus. Some aspects relate to improvements in white light, fluorescence, IR, OCT, and/or other imaging technologies that may be employed alone or in combination with other techniques. Some aspects relate to multi-modal imaging techniques that enable determination of a subject's health status.
    Type: Application
    Filed: June 19, 2020
    Publication date: December 24, 2020
    Applicant: Tesseract Health, Inc.
    Inventors: Tyler S. Ralston, Maurizio Arienzo, Owen Kaye-Kauderer, Benjamin Rosenbluth, Jonathan M. Rothberg, Lawrence C. West, Paul E. Glenn
  • Publication number: 20200400422
    Abstract: Aspects of the present disclosure provide improved techniques for imaging a subject's retina fundus. Some aspects relate to an imaging apparatus that may be substantially binocular shaped and/or may house multiple imaging devices configured to provide multiple corresponding modes of imaging the subject's retina fundus. Some aspects relate to techniques for imaging a subject's eye using white light, fluorescence, infrared (IR), optical coherence tomography (OCT), and/or other imaging modalities that may be employed by a single imaging apparatus. Some aspects relate to improvements in white light, fluorescence, IR, OCT, and/or other imaging technologies that may be employed alone or in combination with other techniques. Some aspects relate to multi-modal imaging techniques that enable determination of a subject's health status.
    Type: Application
    Filed: June 19, 2020
    Publication date: December 24, 2020
    Applicant: Tesseract Health, Inc.
    Inventors: Tyler S. Ralston, Maurizio Arienzo, Owen Kaye-Kauderer, Benjamin Rosenbluth, Jonathan M. Rothberg, Lawrence C. West, Paul E. Glenn
  • Publication number: 20200397286
    Abstract: Aspects of the present disclosure provide improved techniques for imaging a subject's retina fundus. Some aspects relate to an imaging apparatus that may be substantially binocular shaped and/or may house multiple imaging devices configured to provide multiple corresponding modes of imaging the subject's retina fundus. Some aspects relate to techniques for imaging a subject's eye using white light, fluorescence, infrared (IR), optical coherence tomography (OCT), and/or other imaging modalities that may be employed by a single imaging apparatus. Some aspects relate to improvements in white light, fluorescence, IR, OCT, and/or other imaging technologies that may be employed alone or in combination with other techniques. Some aspects relate to multi-modal imaging techniques that enable determination of a subject's health status.
    Type: Application
    Filed: June 19, 2020
    Publication date: December 24, 2020
    Applicant: Tesseract Health, Inc.
    Inventors: Tyler S. Ralston, Maurizio Arienzo, Owen Kaye-Kauderer, Benjamin Rosenbluth, Jonathan M. Rothberg, Lawrence C. West, Paul E. Glenn
  • Publication number: 20200397290
    Abstract: Aspects of the present disclosure provide improved techniques for imaging a subject's retina fundus. Some aspects relate to an imaging apparatus that may be substantially binocular shaped and/or may house multiple imaging devices configured to provide multiple corresponding modes of imaging the subject's retina fundus. Some aspects relate to techniques for imaging a subject's eye using white light, fluorescence, infrared (IR), optical coherence tomography (OCT), and/or other imaging modalities that may be employed by a single imaging apparatus. Some aspects relate to improvements in white light, fluorescence, IR, OCT, and/or other imaging technologies that may be employed alone or in combination with other techniques. Some aspects relate to multi-modal imaging techniques that enable determination of a subject's health status.
    Type: Application
    Filed: June 19, 2020
    Publication date: December 24, 2020
    Applicant: Tesseract Health, Inc.
    Inventors: Tyler S. Ralston, Maurizio Arienzo, Owen Kaye-Kauderer, Benjamin Rosenbluth, Jonathan M. Rothberg, Lawrence C. West, Paul E. Glenn
  • Publication number: 20200397289
    Abstract: Aspects of the present disclosure provide improved techniques for imaging a subject's retina fundus. Some aspects relate to an imaging apparatus that may be substantially binocular shaped and/or may house multiple imaging devices configured to provide multiple corresponding modes of imaging the subject's retina fundus. Some aspects relate to techniques for imaging a subject's eye using white light, fluorescence, infrared (IR), optical coherence tomography (OCT), and/or other imaging modalities that may be employed by a single imaging apparatus. Some aspects relate to improvements in white light, fluorescence, IR, OCT, and/or other imaging technologies that may be employed alone or in combination with other techniques. Some aspects relate to multi-modal imaging techniques that enable determination of a subject's health status.
    Type: Application
    Filed: June 19, 2020
    Publication date: December 24, 2020
    Applicant: Tesseract Health, Inc.
    Inventors: Tyler S. Ralston, Maurizio Arienzo, Owen Kaye-Kauderer, Benjamin Rosenbluth, Jonathan M. Rothberg, Lawrence C. West, Paul E. Glenn
  • Publication number: 20200400620
    Abstract: Micromachined ultrasonic transducers integrated with complementary metal oxide semiconductor (CMOS) substrates are described, as well as methods of fabricating such devices. Fabrication may involve two separate wafer bonding steps. Wafer bonding may be used to fabricate sealed cavities in a substrate. Wafer bonding may also be used to bond the substrate to another substrate, such as a CMOS wafer. At least the second wafer bonding may be performed at a low temperature.
    Type: Application
    Filed: August 5, 2020
    Publication date: December 24, 2020
    Applicant: Butterfly Network, Inc.
    Inventors: Jonathan M. Rothberg, Susan A. Alie, Keith G. Fife, Nevada J. Sanchez, Tyler S. Ralston
  • Publication number: 20200397285
    Abstract: Aspects of the present disclosure provide improved techniques for imaging a subject's retina fundus. Some aspects relate to an imaging apparatus that may be substantially binocular shaped and/or may house multiple imaging devices configured to provide multiple corresponding modes of imaging the subject's retina fundus. Some aspects relate to techniques for imaging a subject's eye using white light, fluorescence, infrared (IR), optical coherence tomography (OCT), and/or other imaging modalities that may be employed by a single imaging apparatus. Some aspects relate to improvements in white light, fluorescence, IR, OCT, and/or other imaging technologies that may be employed alone or in combination with other techniques. Some aspects relate to multi-modal imaging techniques that enable determination of a subject's health status.
    Type: Application
    Filed: June 19, 2020
    Publication date: December 24, 2020
    Applicant: Tesseract Health, Inc.
    Inventors: Tyler S. Ralston, Maurizio Arienzo, Owen Kaye-Kauderer, Benjamin Rosenbluth, Jonathan M. Rothberg, Lawrence C. West, Paul E. Glenn
  • Publication number: 20200383660
    Abstract: Described herein are methods and apparatuses for ultrasound coupling. Certain aspects relate to coupling bodies for acoustically coupling an ultrasound device to a subject. A coupling body may include a first surface configured to couple to an ultrasound device, a second surface configured to contact the subject, a reservoir internal to the coupling body, and a plurality of openings extending between the reservoir and one or both of the first surface and the second surface. The reservoir may contain ultrasound gel. A coupling body may include an adhesive coupled to a subpart of the surface of the coupling body. A coupling body may include a first surface configured to contact the ultrasound device and a second surface including first adhesive configured to adhere to the subject. The first surface may also include second adhesive configured to adhere to an ultrasound patch device. Certain aspects also relate to packaging coupling bodies.
    Type: Application
    Filed: June 23, 2020
    Publication date: December 10, 2020
    Applicant: Butterfly Network, Inc.
    Inventors: Jonathan M. Rothberg, Tyler S. Ralston, Christopher Thomas McNulty, Nevada J. Sanchez
  • Patent number: 10857567
    Abstract: An ultrasound device is describe in which analog ultrasonic transducer output signal are directly converted to digital signals. The ultrasound device includes microfabricated ultrasonic transducers directly coupled to a sigma delta analog-to-digital converter in some instances. The direct digital conversion may allow for omission of undesirable analog processing stages in the ultrasound circuitry chain. In some situations, the ADC may be integrated on the same substrate as the ultrasound transducer.
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: December 8, 2020
    Assignee: Butterfly Network, Inc.
    Inventors: Amandeep Singh, Kailiang Chen, Tyler S. Ralston
  • Patent number: 10859687
    Abstract: Circuitry for ultrasound devices is described. A multi-level pulser is described, which can support time-domain and spatial apodization. The multi-level pulser may be controlled through a software-defined waveform generator. In response to the execution of a computer code, the waveform generator may access master segments from a memory, and generate a stream of packets directed to pulsing circuits. The stream of packets may be serialized. A plurality of decoding circuits may modulate the streams of packets to obtain spatial apodization.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: December 8, 2020
    Assignee: Butterfly Network, Inc.
    Inventors: Liewei Bao, Kailiang Chen, Tyler S. Ralston, Nevada J. Sanchez
  • Patent number: 10856840
    Abstract: A universal ultrasound device having an ultrasound includes a semiconductor die; a plurality of ultrasonic transducers integrated on the semiconductor die, the plurality of ultrasonic transducers configured to operate a first mode associated with a first frequency range and a second mode associated with a second frequency range, wherein the first frequency range is at least partially non-overlapping with the second frequency range; and control circuitry configured to: control the plurality of ultrasonic transducers to generate and/or detect ultrasound signals having frequencies in the first frequency range, in response to receiving an indication to operate the ultrasound probe in the first mode; and control the plurality of ultrasonic transducers to generate and/or detect ultrasound signals having frequencies in the second frequency range, in response to receiving an indication to operate the ultrasound probe in the second mode.
    Type: Grant
    Filed: January 25, 2017
    Date of Patent: December 8, 2020
    Assignee: Butterfly Network, Inc.
    Inventors: Jonathan M. Rothberg, Susan A. Alie, Nevada J. Sanchez, Tyler S. Ralston, Christopher Thomas McNulty, Jaime Scott Zahorian, Paul Francis Cristman, Matthew de Jonge, Keith G. Fife
  • Patent number: 10856847
    Abstract: To implement a single-chip ultrasonic imaging solution, on-chip signal processing may be employed in the receive signal path to reduce data bandwidth and a high-speed serial data module may be used to move data for all received channels off-chip as digital data stream. The digitization of received signals on-chip allows advanced digital signal processing to be performed on-chip, and thus permits the full integration of an entire ultrasonic imaging system on a single semiconductor substrate. Various novel waveform generation techniques, transducer configuration and biasing methodologies, etc., are likewise disclosed. HIFU methods may additionally or alternatively be employed as a component of the “ultrasound-on-a-chip” solution disclosed herein.
    Type: Grant
    Filed: March 21, 2016
    Date of Patent: December 8, 2020
    Assignee: Butterfly Network, Inc.
    Inventors: Jonathan M. Rothberg, Keith G. Fife, Tyler S. Ralston, Gregory L. Charvat, Nevada J. Sanchez
  • Patent number: 10843227
    Abstract: CMOS Ultrasonic Transducers and processes for making such devices are described. The processes may include forming cavities on a first wafer and bonding the first wafer to a second wafer. The second wafer may be processed to form a membrane for the cavities. Electrical access to the cavities may be provided.
    Type: Grant
    Filed: March 26, 2019
    Date of Patent: November 24, 2020
    Assignee: Butterfly Network, Inc.
    Inventors: Jonathan M. Rothberg, Keith G. Fife, Tyler S. Ralston, Gregory L. Charvat, Nevada J. Sanchez
  • Patent number: 10840864
    Abstract: An ultrasound circuit comprising a single-ended trans-impedance amplifier (TIA) is described. The TIA is coupled to an ultrasonic transducer to amplify an electrical signal generated by the ultrasonic transducer in response to receiving an ultrasound signal. The TIA is followed by further processing circuitry configured to filter, amplify, and digitize the signal produced by the TIA.
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: November 17, 2020
    Assignee: Butterfly Network, Inc.
    Inventors: Amandeep Singh, Kailiang Chen, Tyler S. Ralston
  • Publication number: 20200348794
    Abstract: An electronic device with an ability to perform touch detection includes an ultrasound touch sensor disposed within a housing and configured to detect physical contact with an exterior surface of the housing. The sensor may emit ultrasonic sound waves, receive reflected ultrasonic sound waves reflected from a surface portion corresponding to the physical contact at the exterior surface of the housing, and compare the reflected ultrasonic sound waves to a stored reflection pattern. Based on determining a match between the reflected ultrasonic sound waves and the stored reflection pattern, the electronic device may activate a function. The sensor may be part of an ultrasound-on-a-chip device.
    Type: Application
    Filed: April 27, 2020
    Publication date: November 5, 2020
    Applicant: Butterfly Network, Inc.
    Inventors: Tyler S. Ralston, Jianwei Liu, Jonathan M. Rothberg