Patents by Inventor Tyler W. Olson
Tyler W. Olson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12282303Abstract: A system and methods for multivariant learning and optimization repeatedly generate self-organized experimental units (SOEUs) based on the one or more assumptions for a randomized multivariate comparison of process decisions to be provided to users of a system. The SOEUs are injected into the system to generate quantified inferences about the process decisions. Responsive to injecting the SOEUs, at least one confidence interval is identified within the quantified inferences, and the SOEUs are iteratively modified based on the at least one confidence interval to identify at least one causal interaction of the process decisions within the system. The causal interaction can be used for testing, diagnosis, and optimization of the system performance.Type: GrantFiled: September 11, 2019Date of Patent: April 22, 2025Assignee: 3M Innovative Properties CompanyInventors: Gilles J. Benoit, Brian E. Brooks, Peter O. Olson, Tyler W. Olson
-
Patent number: 12282304Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for determining causal models for controlling environments.Type: GrantFiled: June 16, 2023Date of Patent: April 22, 2025Assignee: 3M Innovative Properties CompanyInventors: Brian E. Brooks, Gilles J. Benoit, Peter O. Olson, Tyler W. Olson, Himanshu Nayar, Frederick J. Arsenault, Nicholas A. Johnson
-
Publication number: 20250036112Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for optimizing a process of manufacturing a product. In one aspect, the method comprises repeatedly performing the following: i) selecting a configuration of input settings for manufacturing a product, based on a causal model that measures causal relationships between input settings and a measure of a quality of the product; ii) determining the measure of the quality of the product manufactured using the configuration of input settings; and iii) adjusting, based on the measure of the quality of the product manufactured using the configuration of input settings, the causal model.Type: ApplicationFiled: October 16, 2024Publication date: January 30, 2025Inventors: Brian E. Brooks, Gilles J. Benoit, Peter O. Olson, Tyler W. Olson, Himanshu Nayar, Frederick J. Arsenault, Nicholas A. Johnson, Brett R. Hemes, Thomas J. Strey, Jonathan B. Arthur, Nathan J. Herbst, Aaron K. Nienaber, Sarah M. Mullins, Mark W. Orlando, Cory D. Sauer, Timothy J. Clemens, Scott L. Barnett, Zachary M. Schaeffer, Patrick G. Zimmerman, Gregory P. Moriarty, Jeffrey P. Adolf, Steven P. Floeder, Andreas Backes, Peter J. Schneider, Maureen A. Kavanagh, Glenn E. Casner, Miaoding Dai, Christopher M. Brown, Lori A. Sjolund, Jon A. Kirschhoffer, Carter C. Hughes
-
Publication number: 20240426921Abstract: Method for active battery management to optimize battery performance. The method includes providing signal injections for charging and discharging of a battery. The signal injections include various charging and discharging profiles, rates, and endpoints. Response signals corresponding with the signal injections are received, and a utility of those signals is measured. Based upon the utility of the response signals, data relating to charging and discharging of the battery is modified to optimize battery performance and to determine when to discharge the battery into a power grid in order to return power to the grid in exchange for an economic benefit such as a payment or rebate from a utility company.Type: ApplicationFiled: September 4, 2024Publication date: December 26, 2024Inventors: Catherine A. Leatherdale, Brian E. Brooks, Gilles J. Benoit, Peter O. Olson, Tyler W. Olson, Himanshu Nayar, Frederick J. Arsenault, Nicholas A. Johnson, Vincent J.L. Chevrier, Don Vincent West, Brandon A. Bartling
-
Publication number: 20240403745Abstract: A method includes selecting a plurality of operational components to which operational resources are allocated, selecting a plurality of control signals for the plurality of operational components, applying the plurality of control signals to the plurality of operational components to determine an operational effect of the plurality control signals on the operational components, applying a resource requirement for each of the plurality of operational components, determining, using a queue optimization model, a first control signal target value, based on the operational effect of each of the plurality of control signals on each of the plurality of operational components and the resource requirement for each of the plurality of control signals for each of the plurality of operational components, and assigning, based on the first control signal target value, an operational resource allocation to each of the plurality of operational components.Type: ApplicationFiled: October 12, 2022Publication date: December 5, 2024Inventors: Frederick J. Arsenault, Brian E. Brooks, Sean T. Kalafut, Peter G. Klink, Scott A. Ostercamp, Tyler W. Olson, Peter O.N. Olson, Wilmina M. Marget, Angela Reda
-
Patent number: 12140938Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for optimizing a process of manufacturing a product. In one aspect, the method comprises repeatedly performing the following: i) selecting a configuration of input settings for manufacturing a product, based on a causal model that measures causal relationships between input settings and a measure of a quality of the product; ii) determining the measure of the quality of the product manufactured using the configuration of input settings; and iii) adjusting, based on the measure of the quality of the product manufactured using the configuration of input settings, the causal model.Type: GrantFiled: October 3, 2019Date of Patent: November 12, 2024Assignee: 3M Innovative Properties CompanyInventors: Brian E. Brooks, Gilles J. Benoit, Peter O. Olson, Tyler W. Olson, Himanshu Nayar, Frederick J. Arsenault, Nicholas A. Johnson, Brett R. Hemes, Thomas J. Strey, Jonathan B. Arthur, Nathan J. Herbst, Aaron K. Nienaber, Sarah M. Mullins, Mark W. Orlando, Cory D. Sauer, Timothy J. Clemens, Scott L. Barnett, Zachary M. Schaeffer, Patrick G. Zimmerman, Gregory P. Moriarty, Jeffrey P. Adolf, Steven P. Floeder, Andreas Backes, Peter J. Schneider, Maureen A. Kavanagh, Glenn E. Casner, Miaoding Dai, Christopher M. Brown, Lori A. Sjolund, Jon A. Kirschhoffer, Carter C. Hughes
-
Publication number: 20240369981Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for determining causal models for controlling environments.Type: ApplicationFiled: July 11, 2024Publication date: November 7, 2024Inventors: Himanshu Nayar, Frederick J. Arsenault, Nicholas A. Johnson, Brian E. Brooks, Gilles J. Benoit, Peter O. Olson, Tyler W. Olson
-
Patent number: 12099046Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for optimizing a process of manufacturing a biologic pharmaceutical. In one aspect, the method comprises repeatedly performing the following: i) selecting a configuration of input settings for manufacturing a batch of a biologic pharmaceutical based on a causal model that measures current causal relationships between input settings and a measure of a quality of batches of the biological pharmaceutical; ii) determining a measure of the quality of a batch of the biological pharmaceutical manufactured using the configuration of input settings; and iii) adjusting, based on the measure of the quality of the batch of the biological pharmaceutical, the causal model.Type: GrantFiled: October 3, 2019Date of Patent: September 24, 2024Assignee: Solventum Intellectual Properties CompanyInventors: Brian E. Brooks, Gilles J. Benoit, Peter O. Olson, Tyler W. Olson, Himanshu Nayar, Frederick J. Arsenault, Nicholas A. Johnson, Susan L Woulfe, Mark A. Tomai
-
Patent number: 12092694Abstract: Method for active battery management to optimize battery performance. The method includes providing signal injections for charging and discharging of a battery. The signal injections include various charging and discharging profiles, rates, and endpoints. Response signals corresponding with the signal injections are received, and a utility of those signals is measured. Based upon the utility of the response signals, data relating to charging and discharging of the battery is modified to optimize battery performance and to determine when to discharge the battery into a power grid in order to return power to the grid in exchange for an economic benefit such as a payment or rebate from a utility company.Type: GrantFiled: September 10, 2019Date of Patent: September 17, 2024Assignee: 3M Innovative Properties CompanyInventors: Catherine A. Leatherdale, Brian E. Brooks, Gilles J. Benoit, Peter O. Olson, Tyler W. Olson, Himanshu Nayar, Frederick J. Arsenault, Nicholas A. Johnson, Vincent J.L. Chevrier, Don Vincent West, Brandon A. Bartling
-
Patent number: 12055903Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for determining causal models for controlling environments.Type: GrantFiled: September 11, 2019Date of Patent: August 6, 2024Assignee: 3M Innovative Properties CompanyInventors: Himanshu Nayar, Frederick J. Arsenault, Nicholas A. Johnson, Brian E. Brooks, Gilles J. Benoit, Peter O. Olson, Tyler W. Olson
-
Publication number: 20240248439Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for determining causal models for controlling environments. One of the methods includes repeatedly selecting, by a control system for the environment, control settings for the environment based on internal parameters of the control system, wherein: at least some of the control settings for the environment are selected based on a causal model, and the internal parameters include a first set of internal parameters that define a number of previously received performance metric values that are used to generate the causal model for a particular controllable element; obtaining, for each selected control setting, a performance metric value; determining that generating the causal model for the at particular controllable element would result in higher system performance; and adjusting, based on the determining, the first set of internal parameters.Type: ApplicationFiled: April 2, 2024Publication date: July 25, 2024Inventors: Gilles J. Benoit, Brian E. Brooks, Peter O. Olson, Tyler W. Olson, Himanshu Nayar, Frederick J. Arsenault, Nicholas A. Johnson
-
Publication number: 20240176316Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for determining causal models for controlling environments. One of the methods includes repeatedly selecting control settings for the environment based on (i) a causal model that identifies causal relationships between possible settings for controllable elements in the environment and environment responses that reflect a performance of the control system in controlling the environment and (ii) current values of a set of internal parameters; and during the repeatedly selecting: monitoring environment responses to the selected control settings; determining, based on the environment responses, an indication that one or more properties of the environment have changed; and in response, modifying the current values of one or more of the internal parameters.Type: ApplicationFiled: February 9, 2024Publication date: May 30, 2024Inventors: Brian E. Brooks, Gilles J. Benoit, Peter O. Olson, Tyler W. Olson, Himanshu Nayar, Frederick J. Arsenault, Nicholas A. Johnson
-
Patent number: 11966204Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for determining causal models for controlling environments. One of the methods includes repeatedly selecting, by a control system for the environment, control settings for the environment based on internal parameters of the control system, wherein: at least some of the control settings for the environment are selected based on a causal model, and the internal parameters include a first set of internal parameters that define a number of previously received performance metric values that are used to generate the causal model for a particular controllable element; obtaining, for each selected control setting, a performance metric value; determining that generating the causal model for the particular controllable element would result in higher system performance; and adjusting, based on the determining, the first set of internal parameters.Type: GrantFiled: September 11, 2019Date of Patent: April 23, 2024Assignee: 3M INNOVATIVE PROPERTIES COMPANYInventors: Gilles J. Benoit, Brian E. Brooks, Peter O. Olson, Tyler W. Olson, Himanshu Nayar, Frederick J. Arsenault, Nicholas A. Johnson
-
Publication number: 20240085868Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for determining causal models for controlling environments. One of the methods includes identifying a procedural instance; determining a temporal extent for the procedural instance based on temporal extent parameters for the one or more entities in the procedural instance; selecting control settings for the procedural instance; monitoring environment responses to the control settings that are received for the one or more entities; determining which of the environment responses to attribute to the procedural instance in a causal model; and adjusting, based at least in part on the environment responses that are attributed to the procedural instance, the temporal extent parameters for the one or more entities.Type: ApplicationFiled: November 17, 2023Publication date: March 14, 2024Inventors: Brian E. Brooks, Gilles J. Benoit, Peter O. Olson, Tyler W. Olson, Himanshu Nayar, Frederick J. Arsenault, Nicholas A. Johnson
-
Patent number: 11927926Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for determining causal models for controlling environments. One of the methods includes repeatedly selecting control settings for the environment based on (i) a causal model that identifies causal relationships between possible settings for controllable elements in the environment and environment responses that reflect a performance of the control system in controlling the environment and (ii) current values of a set of internal parameters; and during the repeatedly selecting: monitoring environment responses to the selected control settings; determining, based on the environment responses, an indication that one or more properties of the environment have changed; and in response, modifying the current values of one or more of the internal parameters.Type: GrantFiled: September 11, 2019Date of Patent: March 12, 2024Assignee: 3M Innovative Properties CompanyInventors: Brian E. Brooks, Gilles J. Benoit, Peter O. Olson, Tyler W. Olson, Himanshu Nayar, Frederick J. Arsenault, Nicholas A. Johnson
-
Patent number: 11853018Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for determining causal models for controlling environments. One of the methods includes identifying a procedural instance; determining a temporal extent for the procedural instance based on temporal extent parameters for the one or more entities in the procedural instance; selecting control settings for the procedural instance; monitoring environment responses to the control settings that are received for the one or more entities; determining which of the environment responses to attribute to the procedural instance in a causal model; and adjusting, based at least in part on the environment responses that are attributed to the procedural instance, the temporal extent parameters for the one or more entities.Type: GrantFiled: September 11, 2019Date of Patent: December 26, 2023Assignee: 3M INNOVATIVE PROPERTIES COMPANYInventors: Brian E. Brooks, Gilles J. Benoit, Peter O. Olson, Tyler W. Olson, Himanshu Nayar, Frederick J. Arsenault, Nicholas A. Johnson
-
Publication number: 20230341829Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for determining causal models for controlling environments.Type: ApplicationFiled: June 16, 2023Publication date: October 26, 2023Inventors: Brian E. Brooks, Gilles J. Benoit, Peter O. Olson, Tyler W. Olson, Himanshu Nayar, Frederick J. Arsenault, Nicholas A. Johnson
-
Patent number: 11720070Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for determining causal models for controlling environments.Type: GrantFiled: September 11, 2019Date of Patent: August 8, 2023Assignee: 3M INNOVATIVE PROPERTIES COMPANYInventors: Brian E. Brooks, Gilles J. Benoit, Peter O. Olson, Tyler W. Olson, Himanshu Nayar, Frederick J. Arsenault, Nicholas A. Johnson
-
Publication number: 20220187774Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for determining causal models for controlling environments.Type: ApplicationFiled: September 11, 2019Publication date: June 16, 2022Inventors: Brian E. Brooks, Gilles J. Benoit, Peter O. Olson, Tyler W. Olson, Himanshu Nayar, Frederick J. Arsenault, Nicholas A. Johnson
-
Publication number: 20220189632Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for selecting settings for a treatment of a patient. In one aspect, the method comprises repeatedly performing the following: i) selecting a configuration of input settings for providing a treatment to a patient based on a causal model that measures current causal relationships between input settings and effects of treatments on the patient; ii) receiving a measure of an effect of the treatment on the patient; and iii) adjusting, based on the measure of the effect of the treatment on the patient, the causal model.Type: ApplicationFiled: October 3, 2019Publication date: June 16, 2022Inventors: Brian E. Brooks, Gilles J. Benoit, Peter O. Olson, Tyler W. Olson, Himanshu Nayar, Frederick J. Arsenault, Nicholas A. Johnson, Susan L. Woulfe, Mark A. Tomai